
iContents

UsingUsing

David Gulbransen
Kenrick Rawlings

HTML
DYNAMIC

ii Special Edition Using Dynamic HTML

Special Edition Using Dynamic HTML
Copyright© 1997 by Que® Corporation.

All rights reserved. Printed in the United States of America. No part
of this book may be used or reproduced in any form or by any
means, or stored in a database or retrieval system, without prior
written permission of the publisher except in the case of brief quota-
tions embodied in critical articles and reviews. Making copies of
any part of this book for any purpose other than your own personal
use is a violation of United States copyright laws. For information,
address Que Corporation, 201 W. 103rd Street, Indianapolis, IN,
46290. You may reach Que’s direct sales line by calling 1-800-428-
5331.

Library of Congress Catalog No.: CIP Data available upon
request.

ISBN: 0-7897-1482-5

This book is sold as is, without warranty of any kind, either express
or implied, respecting the contents of this book, including but not
limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither Que
Corporation nor its dealers or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability,
loss, or damage caused or alleged to have been caused directly or
indirectly by this book.

99 98 97 6 5 4 3 2

Interpretation of the printing code: the rightmost double-digit num-
ber is the year of the book’s printing; the rightmost single-digit
number, the number of the book’s printing. For example, a printing
code of 97-1 shows that the first printing of the book occurred in
1997.

All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Que cannot
attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or
service mark.

Screen reproductions in this book were created using Collage Plus
from Inner Media, Inc., Hollis, NH.

iiiContents

Contents at a Glance

I Dynamic HTML Basics

1 Dynamic HTML: A Defense 7
2 Dynamic HTML Overview 21
3 Microsoft versus Netscape 35

II Dynamic HTML Foundations

4 Cascading Style Sheets Primer 51
5 JavaScript Primer 79
6 Dynamic HTML Object Model 111
7 Event Handling 137

III Inside Dynamic HTML

8 Dynamic Styles 167
9 Layout and Positioning 191

10 Dynamic Content 215

IV Data Awareness

11 Introduction to Data Binding 231
12 Using Data Source Objects 251

V Multimedia and Dynamic HTML

13 Introducing Multimedia 273
14 Multimedia Transitions 289
15 Multimedia Filters and ActiveX Controls 315

VI Real World Dynamic HTML

16 Pin the Tail on the Donkey 337
17 Basketball Explained 355
18 Building an Online Catalog 377
19 Building the Smashout Video Game 401

iv Special Edition Using Dynamic HTML

VII Appendixes

A HTML Elements and Attributes 427
B CSS and CSS Positioning Attributes 455
C Using VBScript Instead of JavaScript 471
D Scripting Objects, Collections, Methods, and Properties 485
E Special Edition Using Dynamic HTML Online Web Site 497
F Browser-Safe Hexadecimal Chart 507
G Dynamic HTML Tips and Utilities 513
H Glossary 549

Index 553

vContents

Table of Contents

Introduction 1
Dynamic HTML 2

Why You Need This Book 2

How This Book Is Organized 2

Conventions Used in This Book 3

I Dynamic HTML Basics

1 Dynamic HTML: A Defense 7
The Limits of Static HTML 8

Text Formatting Limits 9
Layout Control Limits 9
Inability to Dynamically Change Content 10

Advantageous Features of Dynamic HTML 10
Layout Precision with Dynamic HTML 11
Data Awareness 13
Dynamically Changing Pages after Loading 15

Style Sheets 16
Increasing Web Site Design Control with CSS 17
Creating Web Site Templates with CSS 17

Scripting 17
JavaScript 17
VBScript 18

The Practicality of Dynamic HTML 18
Creating Compelling Web Sites 18
Easier Maintenance 19
Lower Server Load 19

From Here… 19

2 Dynamic HTML Overview 21
Defining Microsoft Dynamic HTML 22

The Object Model 22

vi Special Edition Using Dynamic HTML

Employing JavaScript or VBScript with Dynamic HTML 24
Communicating Between Objects 24
Putting the Dynamic in Dynamic HTML with Scripting 25

The Importance of Cascading Style Sheets 25

Adapting Content for the Browser 26
Controlling Content at Load Time 26
Customizing Content for the User 26

Dynamically Altering Content at Runtime 27
Expanding an Outline View 27
Changing Text Content on an Already Loaded Page 27
Changing Object Position on a Page 28

Dynamic HTML and Multimedia 29
Animation Effects 29
Filtering, Blending, and Alpha Channel Graphics 30

Data Binding: The Power of Dynamic HTML 31
Creating Tables On-the-Fly 32
Making Elements Data Aware 32

Application Building with Dynamic HTML 33

From Here… 33

3 Microsoft versus Netscape 35
Working with the W3C Consortium 36

Defining “Dynamic” in Dynamic HTML 37

Scripting: JavaScript and VBScript 40

Cascading Style Sheets and JavaScript Style Sheets 41

Microsoft Specific Features of Dynamic HTML 43

Feature Comparison Chart 45

From Here… 47

II Dynamic HTML Foundations

4 Cascading Style Sheets Primer 51
The Elements of Style 52

Fonts 52
Backgrounds 52
Text 53

viiContents

Borders 53
Lists 53

Defining Cascading Style Sheets 53

Style Sheet Syntax 56
Specifying Styles in the <HEAD> Section 57
Specifying Styles with Multiple Selectors 58
Linking Style Sheets From Other Documents 59
Importing Style Sheets 60
Defining “Cascading” in Cascading Style Sheets 61
Understanding CSS Inheritance 64
Comments 64

CSS Properties Divisions 65

Font 65
Color and Background 65
Text 66
Box 66
Classification 67

Values 67
Specifying Measurement Units 67
Specifying Color 68
Specifying Font Values 69

Advanced CSS 70
Specifying Styles with Classes 71
Specifying Styles with Element IDs 72
Pseudo Classes and Elements 73
Nesting Elements 74

CSS Positioning 76

Where to Learn More About CSS 76

From Here… 77

5 JavaScript Primer 79
Validating the Use of JavaScript with Dynamic HTML 80

Introduction to JavaScript 80

Statements 83

Blocks 83

Comments 83

viii Special Edition Using Dynamic HTML

Single-Line Comments 84
Multiline Comments 84

Data 85
Strings 85
Numbers 86
Booleans 86
Null 86

Expressions 86
Numeric Expressions 87
Logical Expressions 87

Variables 89
Defining and Naming Variables 89
Changing the Value of a Variable 91

Functions 93
Built-In Functions 93
User-Defined Functions 95
Returning Values from Functions 96

Flow Control 97
if and if…else 97
for Loops 98
while Loops 99
break and continue Statements 100

Objects 101
Methods 102
Properties 102
Built-In Objects 103
User-Defined Objects 103

Arrays 104

An Example JavaScript Program 105

JavaScript Resources 108

From Here… 108

6 Dynamic HTML Object Model 111
Viewing HTML Documents as Collections of Objects 112

Language Independence in the Dynamic HTML Object Model 112

Building Upon Netscape’s Efforts 113

ixContents

Understanding the Dynamic HTML Object Model 114

Collections 115
Accessing Collection Elements 115
Returning the Length of a Collection 116

Elements 118
Element Properties 118
Element Methods 120

The window Object 121
document Object 121
location Object 122
history Object 123
frames collection 124
screen Object 124
navigator Object 125
event Object 126

The document Object 127
selection Object 131
body Object 131
all Collection 133
anchors Collection 134
applets Collection 134
forms Collection 134
images Collection 134
links Collection 135
frames Collection 135
scripts Collection 135
embeds Collection 135
plugins Collection 135
filters Collection 135
styleSheets Collection 135

TextRange Object 135

From Here… 136

7 Event Handling 137
Events 138

Mouse Events 139
onmousedown 139
onmouseup 139

x Special Edition Using Dynamic HTML

onclick 139
ondblclick 139
onmouseover 140
onmousemove 140
onmouseout 140
Keyboard Events 140
Focus and Selection Events 141
State Change Events 142
onabort Event 142

Event Firing 143

Event Handlers 143
Event Handling Prior to Dynamic HTML 144
Event Handling in Dynamic HTML 147
Event Handling in Action 147

Binding to Events 149
Binding Events via Elements 150
Binding Events via SCRIPT...FOR 150
Binding Events via VBScript Special Syntax 152

window.event Object 153
keyCode Property 154
altKey Property 154
ctrlKey Property 155
shiftKey Property 155
button Property 155
cancelBubble Property 156
fromElement Property 156
returnValue Property 156
srcElement Property 157
toElement Property 157
x Property 157
y Property 157

Overriding Default Event Handling 158

Event Bubbling 159
Discovering Where the Event Bubbling Started 161
Canceling Event Bubbling 161

From Here… 162

xiContents

III Inside Dynamic HTML

8 Dynamic Styles 167
Changing Font Attributes 168

Changing Font Styles 168
Changing Font Sizes 170
Changing Font Colors 171

Hiding and Showing Elements 172
Visibility 173
Revealing Information Based on Mouse Events 173
Designing a Hide and Display Peek-A-Boo Game 174
Collapsible Outlines 178

CSS Positioning 181
Position 182
Overflow 187
Z-Index 189

From Here… 189

9 Layout and Positioning 191
CSS Positioning 192

Position Property 192
Absolute Positioning 193
Relative Positioning 197

position Property 199

left and top Properties 199

width and height Properties 201

overflow Property 203

clip Property 204

Layers 205
z-index Property 206
visibility Property 207

Moving Elements 209

From Here… 213

xii Special Edition Using Dynamic HTML

10 Dynamic Content 215
Changing Content at Runtime 216

Replacing Elements on an Existing Page 216
Changing Text 217

TextRange Objects 217
TextRange Object Properties and Methods 218

Using TextRange Objects for Dynamic Content 219
Changing an Entire Document 219
Deleting Page Contents 221
Substituting Specified Text 222

Structured Object Model 224
innerText 224
innerHTML 225
outerText 225
outerHTML 225

Using the Object Model for Dynamic Content 226

From Here… 228

IV Data Awareness

11 Introduction to Data Binding 231
Defining Data Binding 232

Server-Side Data Binding 232
Early Attempts at Client-Side Data Binding 233

Downsides to Server-Side Data Binding 233
Complexity of Server-Side Data Binding 234
 Server Scalabilty 235
Round Trip Server Transactions 236
Partial Data Retrieval 237

Client-Side HTML Data Binding Solutions 238

HTML Data Binding Extensions 239
Single- and Repeated-Table Valued Data Consumers 241
The DATASRC Attribute 242
DATAFLD 243
DATAPAGESIZE 244
DATAFORMATAS 244
Implementing the Data Binding Attributes 244

xiiiContents

Data Consumers 247
DIV 247
SPAN 247
SELECT 248
MARQUEE 249
IMG 249
APPLET 249

From Here… 250

12 Using Data Source Objects 251
Data Source Objects (DSOs) 252

Data Source Object Responsibilities 252
DSO Cross-Platform and Language Compatibility 256

Tabular Data Control Basics 257
Using the Tabular Data Control 258
Navigating Data with the Tabular Data Control 260
Tabular Data Control File Properties 265
Tabular Data Control Sorting 267

From Here… 270

V Multimedia and Dynamic HTML

13 Introducing Multimedia 273
Multimedia Effects with Dynamic HTML 274

Scaling Images 274
Transitions 276
Scaling Transitions 277
Click and Drag Effects 280

Introducing the ActiveX Multimedia Controls 283
Rotating Text and Objects 283
Structured Graphics 284
Path Animation Effects 285
Transitions 285
Filters 287

From Here… 288

xiv Special Edition Using Dynamic HTML

14 Multimedia Transitions 289
Using Transitions 290

Setting Up the HTML Document for a Transition 290
Scripting the Transition 292
Implementing the Transition 295

Transition Types 297
Box In 298
Box Out 299
Circle In 299
Circle Out 300
Wipe Up 301
Wipe Down 301
Wipe Right 302
Wipe Left 303
Vertical Blinds 303
Horizontal Blinds 304
Checkerboard Across 305
Checkerboard Down 305
Random Dissolve 306
Split Vertical In 307
Split Vertical Out 307
Split Horizontal In 308
Split Horizontal Out 309
Strips Left Down 309
Strips Left Up 310
Strips Right Down 311
Strips Right Up 311
Random Bars Horizontal 312
Random Bars Vertical 313
Random 314

From Here… 314

15 Multimedia Filters and ActiveX Controls 315
Introducing Filters 316

Setting Up Filters in Your HTML 317

X-Ray Filter 318

Drop Shadow Filter 320

xvContents

Flip Horizontal Filter 321

Flip Vertical Filter 322

Grayscale Filter 323

Invert Filter 324

Lights Filter 325

Motion Blur Filter 327

Opacity Filter 328

Shadow Filter 329

Wave Filter 330

Glow Filter 331

Chromakey Filter 332

The ActiveX Multimedia Objects 333

From Here… 334

VI Real World Dynamic HTML

16 Pin the Tail on the Donkey 337
Understanding the Game 338

Laying Out the Game 338
Structuring the Document 338
Positioning Static Elements 339
Positioning Dynamic Elements 340
Positioning the Tails 342

Scripting Functionality 343
MoveTail() 344
detect() 344
count() 345
blindfold() 346
seeagain() 346
sorry() 347
winner() 348
reset() 348

The Final Page! 349

From Here… 353

xvi Special Edition Using Dynamic HTML

17 Basketball Explained 355
Creating the Images 356

Laying Out the Page 357
Positioning the Initial Layout 358
Creating the Scroll Box 358
Formatting the Explanations 361

Scripting the Functionality 363
showObject() and hideObject() 364
showScreenCourt() and hideScreenCourt() 365
highlight() and lowlight() 366
reset() 366

The Final Page! 367

From Here… 375

18 Building an Online Catalog 377
Laying the Groundwork 378

The Basic HTML 378
Specifying the Data Source 379
Setting Up the Data File 380
Specifying the Table View 381
The Online Catalog Foundation 381

Providing Sort and Filter Capabilities 383
Sorting Data by Column 383
Specifying the User Interface Controls for Filtering 385
Filtering Based on Product Type 386
Filtering Data Based on Maximum Cost 387
Examining the Online Catalog Foundation 388

Providing Detailed Product Information 391
Switching Between Table View and Product View 391
Adding the Product View 393
Navigating through the Product View 394

The Final Page! 395

From Here… 399

19 Building the Smashout Video Game 401
The Rules of the Game 402

Challenges of Video Game Programming 403

xviiContents

Building the Arena 403
Positioning Game Objects 404
The Smashout Game Foundation 406

Animating the Smashout Game 408
Animating the Player Paddle with Mouse Events 408
Starting the Game 409
Getting the Ball Moving 409
Checking to See if the Ball Hit a Wall 411
Checking to See if the Ball Hit the Paddle or a Target 412
The Foundation for Animating the Smashout Game 413

Adding Game Logic 416
Losing a Life and Possibly the Game 416
Winning the Game 418

The Final Page! 420

From Here… 423

VII Appendixes

A HTML Elements and Attributes 427
<!-- - -> 428

<!DOCTYPE> 428

<A> 428

<ADDRESS> 429

<APPLET> 429

<AREA> 430

 430

<BASE> 430

<BASEFONT> 431

<BGSOUND> 431

<BIG> 431

<BLOCKQUOTE> 432

<BODY> 432

 433

<BUTTON> 433

<CAPTION> 433

xviii Special Edition Using Dynamic HTML

<CENTER> 434

<CITE> 434

<CODE> 434

<COL> 434

<COLGROUP> 435

<DD> 435

<DFN> 435

<DIR> 436

<DIV> 436

<DL> 436

<DT> 437

 437

<EMBED> 437

 438

<FORM> 438

<FRAME> 439

<FRAMESET> 439

<HEAD> 440

<H1>, <H2>, <H3>, <H4>, <H5>, <H6> 440

<HR> 440

<HTML> 441

<I> 441

 441

<INPUT> 442

<LABEL> 442

 443

<LINK> 443

<MAP> 443

<MARQUEE> 444

<META> 445

<NOBR> 445

<NOSCRIPT> 445

<OBJECT> 445

xixContents

 446

<OPTION> 446

<P> 447

<PARAM> 447

<PRE> 447

<S> 447

<SCRIPT> 448

<SELECT> 448

<SMALL> 449

 449

 449

<STYLE> 450

<SUB> 450

<SUP> 450

<TABLE> 450

<TD> 451

<TEXTAREA> 452

<TITLE> 452

<TR> 453

<TT> 453

<U> 453

 453

B CSS and CSS Positioning Attributes 455
CSS Properties 456

Fonts 456
Backgrounds 458
Borders 460
Text Formatting 461
Layout Formatting 463
List Formatting 465
Pseudo Classes 466
Pseudo Elements 466
Colors 466
Units 467

xx Special Edition Using Dynamic HTML

CSS Positioning Attributes 467
position Property 468
overflow 469
clip 469
z-index 469
visibility 470

C Using VBScript Instead of JavaScript 471
Introduction to VBScript 472

Comments 472

Operators 473
Arithmetic Operators 473
Logical and Comparison Operators 474

Variables 475
Defining and Naming Variables 475
Changing the Value of a Variable 475

Procedures 477
Writing Your Own Sub Procedures 477
Returning Values via Functions 477

Flow Control 478
If…Then…Else 478
For..Next loops 480
While..Wend loops 480

Constants 481
Color Constants 481
Date/Time Constants 482
Date Format Constants 483
String Constants 483

From Here… 484

D Scripting Objects, Collections, Methods, and Properties 485
window object 486

location object 488
frames collection 488
history object 488
screen object 489

xxiContents

navigator object 489
event object 489
document object 490

From Here… 495

E Special Edition Using Dynamic HTML Web Site 497
Using the Web Site 498

Online Resources 498
Dynamic HTML 498
Cascading Style Sheets 499
Scripting Languages 500
Cool DHTML Sites 501

Code Examples 502
Chapter 4: Cascading Style Sheets Primer 502
Chapter 5: JavaScript Primer 502
Chapter 6: Dynamic HTML Object Model 502
Chapter 7: Event Handling 502
Chapter 8: Dynamic Styles 502
Chapter 9: Layout and Positioning 503
Chapter 10: Dynamic Content 503
Chapter 11: Introduction to Data Binding 503
Chapter 12: Using Data Source Objects 503
Chapter 13: Introducing Multimedia 503
Chapter 14: Multimedia Transitions 503
Chapter 15: Multimedia Filters and ActiveX Controls 504
Chapter 16: Pin the Tail on the Donkey 504
Chapter 17: Basketball Explained 504
Chapter 18: Building an Online Catalog 504
Chapter 19: Building the Smashout Video Game 504
Appendix G: Dynamic HTML Tips and Utilities 504

Source Code Zip File 505

F Browser-Safe Hexadecimal Chart 507

G Dynamic HTML Tips and Utilities 513
Scripting Languages 514

Selecting the Optimal Scripting Language 515
Recursion 516
Error Handling and Error Trapping 526

xxii Special Edition Using Dynamic HTML

Optimizing Scripting Syntax 532

Using Visual Effects in Dynamic HTML 533
Using CSS 533

ActiveX Controls and Dynamic HTML 542

Finding Information About Your Document 544

From Here… 547

H Glossary 549

Index 553

xxiiiContents

Credits
PRESIDENT
Roland Elgey

SENIOR VICE PRESIDENT/PUBLISHING
Don Fowley

ASSOCIATE PUBLISHER
David Dwyer

GENERAL MANAGER
Joe Muldoon

PRODUCT DEVELOPMENT SPECIALIST
David Gibson

MANAGING EDITOR
Sarah Kearns

ACQUISITIONS EDITOR
Steve Weiss

DEVELOPMENT EDITOR
Chris Cleveland

PRODUCTION EDITOR
Gina Brown

COPY EDITORS
Jenny Clark
Barbara Hacha
Brad Herriman
Karen Walsh

PRODUCT MARKETING MANAGER
Kourtnaye Sturgeon

ASSISTANT PRODUCT MARKETING MANAGER
Gretchen Schlesinger

TECHNICAL EDITOR
Yusuf Malluf

ACQUISITIONS COORDINATOR
Karen Opal

BOOK DESIGNER
Ruth Harvey

COVER DESIGNER
Sandra Schroeder

ILLUSTRATOR
Kevin Cliburn, Wil Cruz

PRODUCTION TEAM
Lori Cliburn, Kim Cofer,
Laure Robinson, Scott Tullis

INDEXER
Tim Wright

Composed in Century Old Style and ITC Franklin Gothic by Que Corporation.

xxiv Special Edition Using Dynamic HTML

Dedication
From David Gulbransen:

To my family: David, Anne, Mary and Matt.

From Ken Rawlings:

To my mother and father, Janet and Richard.

About the Authors
David Gulbransen has been performing Internet-related consulting and development for over
eight years. He most recently served as the Manager of Information Systems at Dimension X,
which was acquired by Microsoft in early 1997. In addition to his professional work David has
contributed to Java Unleashed (by Sams.net), co-authored Creating Web Applets with Java (by
Sams.net) and authored The Netscape Server Survival Guide (by Sams.net). David’s most recent
project is co-founding Vervet Logic, a provider of high performance web technology solutions,
including channel development, Dynamic HTML, and custom application development. When
he is not slaving behind a monitor and keyboard, David likes to place himself behind the cam-
era as an amateur cinematographer.

Kenrick Rawlings has over ten years programming experience with C++ but abandoned it all
with the alpha release of Java. He was a contributing author to Java Unleashed (by Sams.net)
and co-authored Creating Web Applets with Java (by Sams.net) before turning his attention to
Dynamic HTML. Ken recently co-founded Vervet Logic, which provides consulting and custom
software development for cutting edge web technologies, such as Dynamic HTML and CDF
channels. Between sleeping and coding, Ken enjoys cinema, techno-ambient music, and life
outside of The City.

Acknowledgments
Thanks to Steve Weiss, Gina Brown, Chris Cleveland, and all the other folks at New Riders who
helped make this a great title for Que. Thanks to Garth Bruce at Microsoft for the information.
Special thanks to the folks at BlueMarble Information Services for the use of the space and
bandwidth: Steve Volan, Luke Heidelberger, Jody Miller, Jeff Burkhart, Phil Foster, Rick
Schmelz, Jodi Woods, and especially Nadia Kelley for being so cheerful! Thanks to our families
and friends, without whom we would have collapsed halfway through this project. A very spe-
cial thanks to Jim Causey, Scott Cramer, Carl Zahrt, and Ron Kuk for putting up with many late
night dinners and excuses. And thanks to Stephanie Boys for taking some late night phone
calls. Oh, thanks to Gary Numan and the MMB for the tunes. Thanks to Steve Simms for the
late night cinema to keep us grounded in the real world. And thanks to the South Park gang,
the spirit of Christmas is forever in our hearts.

xxvContents

We’d Like to Hear from You!
As part of our continuing effort to produce books of the highest possible quality, Que would
like to hear your comments. To stay competitive, we really want you, as a computer book
reader and user, to let us know what you like or dislike most about this book or other Que
products.

You can mail comments, ideas, or suggestions for improving future editions to the address
below, or send us a fax at (317) 581-4663. The address of our Internet site is
http://www.mcp.com (World Wide Web).

In addition to exploring our forum, please feel free to contact me personally to discuss your
opinions of this book: I’m sweiss@newriders.mcp.com on the Internet.

Thanks in advance—your comments will help us to continue publishing the best books avail-
able on computer topics in today’s market.

Steve Weiss
201 W. 103rd Street
Indianapolis, Indiana 46290
USA

xxvi Special Edition Using Dynamic HTML

1

I N T R O D U C T I O N

A

Introduction

nyone familiar with the World Wide Web is undoubtedly
aware of the constant state of flux that surrounds new
web-related technology. As companies such as Microsoft
and Netscape battle to gain market share, the weapons
they employ are new techniques and applications, de-
signed to increase the power of the Internet and Internet-
based application development.

The latest advance on the web front comes in the form of
Dynamic HTML, a collection of existing and new tech-
nologies that are designed to maximize the potential for
web-based application development. With the advances
that are being made with Dynamic HTML, web applica-
tion and multimedia development promises to become
easier and faster for the developer—and more robust and
faster for the consumer. How Dynamic HTML accom-
plishes these goals is what is explored in this text. ■

2 Introduction

Dynamic HTML
Dynamic HTML brings together a number of web technologies that work within an easily
manageable structure. By leveraging existing technologies, such as Cascading Style Sheets,
ActiveX, JavaScript, and VBScript, Dynamic HTML delivers an incredibly diverse range of
applications. Dynamic HTML, however, is more than just a category for old technology. With
new features such as data binding and data awareness, Dynamic HTML adds a level of extensi-
bility that was previously unavailable to the web. Holding it all together is the Dynamic HTML
Object Model, which opens the elements on a web page to scripting and manipulation in ways
never before possible.

Why You Need This Book
Bringing together the technologies that Dynamic HTML encompasses is no small task. In
addition to mastering several different technologies, it is necessary to understand how Dy-
namic HTML allows all the pieces to fit together and interoperate.

Getting the most out of Dynamic HTML involves mastering the following:

■ Cascading Style Sheets

■ Cascading Style Sheets Positioning

■ Scripting—JavaScript or VBScript

■ The Dynamic HTML Object Model

■ Data binding and data awareness

■ Implementing ActiveX Controls

This text will acquaint you with all the technologies used in Dynamic HTML. Each of the tech-
nologies is covered with a high level of detail, providing you with the knowledge you will need
to use the technologies in accordance with Dynamic HTML. Then, in the final sections of the
text, you will find some real-life examples. These examples will show you how to practically
implement the theories and technologies discussed throughout this book.

How This Book Is Organized
This book is organized into six parts, each designed to acquaint you with everything you will
need to begin developing your own Dynamic HTML pages and applications:

■ Part I, “Dynamic HTML Basics” provides an introduction to Dynamic HTML. The
chapters in this section are designed to showcase what can be accomplished with
Dynamic HTML, and prime you for the examples and chapters to come.

■ Part II, “Dynamic HTML Foundations,” explores the fundamentals of Dynamic HTML.
This part covers Cascading Style Sheets, JavaScript, the Dynamic HTML Object Model,
and event handling. These are the foundations used to create Dynamic HTML content.

3

■ Part III, “Inside Dynamic HTML,” builds on the foundations provided in Part II and dives
into Dynamic HTML creation—covering dynamic styles, layout and positioning, and
dynamic content.

■ Part IV, “Data Awareness,” tackles data awareness and data binding, demonstrating how
Dynamic HTML can be used to build complex database applications.

■ Part V, “Multimedia and Dynamic HTML,” moves from the world of Data Source Objects
to interactivity and exciting animations. Part V explores the multimedia applications of
Dynamic HTML, including the support for Microsoft’s ActiveX Multimedia Controls.

■ Part VI, “Real World Dynamic HTML,” takes all the components of Dynamic HTML
covered in previous parts and serves up some real world Dynamic HTML. Each chapter
in this part provides a fully functional example of a Dynamic HTML application, complete
with a detailed explanation of its creation.

■ The Appendixes provide a comprehensive resource for the information provided
elsewhere in the text. Comprehensive information on CSS, the Dynamic HTML Object
Model, and alternate scripting languages can be found here.

Conventions Used in This Book
Because this book covers an array of scripting terms and components, it is important to distin-
guish them within the text. Scripting components such as objects, functions, methods, proper-
ties, and so forth are designated in italic text to help you distinguish them from normal text.
Variables are set off by quotation marks(“”).

This book consists of a large amount of code. In complete examples of working code and in code
snippets you may encounter this character, ➥. Within the constraints of printing, only a certain
amount of characters can fit per line of text. The ➥ character designates that the line of code is a
continuation of the line that precedes it. In cases of complete examples, you may find that the
lines of code are numbered. These numbers are NOT part of the code—they are placed there to
reference particular lines in the accompanying text within the body of the chapter.

Notes provide additional information related to the topic at hand. ■

Tips provide quick and helpful information to assist you along the way.

CAUTION

Cautions alert you to potential pitfalls or dangers in the operations discussed.

N O T E

T I P

Conventions Used in This Book

4 Introduction

IP A R T

Dynamic HTML Basics

1 Dynamic HTML: A Defense 7

2 Dynamic HTML Overview 21

3 Microsoft versus Netscape 35

7

1

I
Part

Ch

T

1C H A P T E R

Dynamic HTML: A
Defense

he World Wide Web has revolutionized the way that
people use the Internet and interact with information. It
would be impossible to achieve the level of Internet hyste-
ria that exists today without the World Wide Web. Since
its inception, the web has added compelling graphics,
audio technology, limited interactivity (CGI and image
maps) and has managed to capture the attention of many
industries outside of computing. At the heart of the web is
Hypertext Markup Language (HTML), the basic descrip-
tive language that creates all the pages that advertise and
inform through the web. As the web has matured, how-
ever, HTML has remained the same structurally. In fact,
several HTML advances, such as tables and frames, have
been embraced with mixed results. Although tables con-
tribute formatting capabilities, they are a far cry from
database applications. When you think of new innovative
technologies that are changing the way the web is used,
you probably think of ActiveX, Java, JavaScript, Visual
Basic Script, and Cascading Style Sheets. No one ever
talks of the revolutionary <BLINK> tag.

As technology has grown, stress has been placed on
HTML to adapt. Incorporating all these technologies on
some level has caused new tags to be created and has led
to some changes in the way HTML is viewed. Those
changes have finally come to the creation of a new web
technology that is based in HTML—Dynamic HTML.

Limitations of Static HTML

Although HTML has been a land-
mark breakthrough for presenting
text and graphics electronically to
the largest possible audience, some
drawbacks still exist.

Advantageous Features of
Dynamic HTML

Learn how Dynamic HTML is
revolutionizing information presen-
tation on the web through the
capability to specify typeface, posi-
tion elements on a page, format
page content, and alter page content
at load time or runtime.

Style Sheets

Cascading Style Sheets arm Dy-
namic HTML with the capability to
format web page content with smart
design freedom and sensibility.

Scripting

Scripting languages provide the
interactive backbone for Dynamic
HTML with dynamic content gen-
eration and manipulation.

The Practicality of Dynamic
HTML

Dynamic HTML changes the way
web pages can be used, opening
them up to serve as interfaces for
multimedia and business applica-
tions, and creating new design
methodologies that give designers
more total control over their web-
based content.

8 Chapter 1 Dynamic HTML: A Defense

http://www.quecorp.com

This chapter takes a look at some of the factors that have led to the development of Dynamic
HTML (DHTML), and how the technology has become important to web development. As a
web technology, DHTML offers the capability to create new and innovative web pages, which
can act as interfaces to more complex and compelling web-based applications than were pos-
sible previously. The following parts outline some of the most compelling features of Dynamic
HTML and how those features differ in different vendors’ implementations.

■ Part II, “Dynamic HTML Foundations”: Covers the basics of Cascading Style
Sheets, JavaScript, the Dynamic HTML Object Model, and Event Handling

■ Part III, “Inside Dynamic HTML”: Covers in detail the structure and implementation
of dynamic styles, layout and positioning, dynamic content, and integration of multimedia

■ Part IV, “Data Awareness”: Covers the importance of data binding and data source
objects

■ Part V, “Multimedia and Dynamic HTML”: Covers the integration of multimedia
content with Dynamic HTML through the use of animation effects, CSS Positioning,
transitions, filters, and ActiveX Controls

■ Part VI, “Real World Dynamic HTML”: Provides several models for implementing
Dynamic HTML in real world scenarios

Let’s take a look at the origin of Dynamic HTML, and at some of what Dynamic HTML has to
offer. ■

The Limits of Static HTML
HTML is a great way to develop informative documents that are platform independent. It is
fairly easy to create a web page that combines text and graphics in a single document by using
HTML. CGI scripting and the inclusion of forms act as catalysts for more interactive experi-
ences for the users, allowing them feedback mechanisms, and some rudimentary form of a
user interface. Image map and CGI combinations have been used to create web-based games,
and to create the illusion of a room or world that can be explored by clicking objects. Anyone
comparing those types of interactive activities on the web versus the type of interactivity avail-
able on a CD-ROM will quickly find the experience lacking. Web-based interactivity often is
slower because of the need to download information. This type of interaction is also pretty
limited to simple, point-and-click interfaces. Without incorporating a Java applet or an ActiveX
component, web-based interfaces can be pretty dull—and at the same time take quite an effort
to produce.

Sure, animated GIFs can provide motion on a page, but only when a predefined motion path for
objects is in a static area. With Dynamic HTML, the user could have the option of moving
elements to a location of their choice. Developing complex user interfaces and layouts is also a
tedious prospect; for example, the classic one pixel spacer technique has had to be used in the
past for fine tuning layout control.

9

1

I
Part

Ch

Web design has been limited by three major factors since the inception of HTML: text format-
ting, layout control, and the capability to dynamically alter document content. By refining these
areas of web design, developers can take the web to the next level of user experiences.

Text Formatting Limits
Anyone who has ever tried to perform extensive text formatting with HTML has undoubtedly
become frustrated by HTML’s formatting limitations. This problem derives from the very
inception of the web. The web was built to present information to a variety of clients quickly
and easily. It was not designed for explicit layout and control of positioning, which, coinciden-
tally, are the very elements that designers employ to create visually appealing designs. A quick
lesson in HTML coding reveals that it is bad form to use a bold tag, , when you should use
a tag. The formatting for these tags is determined by the browser, which is exactly
what makes HTML so portable—it’s also what makes it so visually unappealing.

Out of desperation, designers have turned to a number of tricks for designing on the web.
Many have used the technique of applying one pixel spacers to align elements on a page.
Others have used tables to create a design grid. Neither is a very elegant solution, and both
methods result in wasted time for the designer.

Designers have long been frustrated by HTML’s formatting shortcomings. Many typographers
were driven to new levels of insanity simply trying to indent a paragraph. To add insult to in-
jury, the World Wide Web does not enable designers to control the font with which users set up
their browser to display web pages. This lack of control can result in subtle differences from
page to page and from browser to browser. As people began to use HTML tricks such as tables
and alignment to create better layouts, the test formatting sometimes ended up confusing or
unreadable.

Layout Control Limits
In addition to restrictions in the formatting arena, static HTML also prevents web designers
from controlling content/text positioning and layout. Although HTML did make it easy to
combine text and graphics, the resulting layouts were far less appealing than a newspaper or
magazine layout. Positioning images was nearly impossible, as was wrapping text around im-
ages. With the <TABLE> tag, designers found a complicated way to incorporate some aspects
of layout into HTML pages, but the process was quite tedious and still at the mercy of the
browser.

The argument from many HTML purists was that the web was designed to be portable, and
introducing mechanisms to provide strict layout control defeats that portability. The web is a
new medium, after all, and should be designed as such. The problem is that sacrificing many of
these layout elements prevented designers from creating copies of print design and from creat-
ing new interfaces that were unique to the web. Instead, web pages generally looked the same,
with slight variations in graphical elements. The advent of tables and frames has contributed to
the capability of the designer to create more distinct layouts. Tables have aided in the display
and formatting of data, and frames have annoyed users everywhere with poor implementations.

The Limits of Static HTML

10 Chapter 1 Dynamic HTML: A Defense

http://www.quecorp.com

With each successive preview release, however, browser manufacturers continue to improve
the features that were improperly implemented the first time. Even frames have evolved to the
point of being useful for “Table of Contents” and other types of navigation features.

Inability to Dynamically Change Content
HTML is also limited to rendering the contents of a web page, without allowing for changes
after the page has been loaded. In fact, the problem goes even further than that: A web page
with static HTML has no mechanism to adapt its layout to the browser being used to access it.
If, for example, the user viewing a page resizes the window, the text might rewrap, but the
images won’t scale accordingly.

A concert promoter, for example, might want to have a page that showed the seating chart and
stage layout for an upcoming concert. With static HTML, she could provide a GIF or JPEG
image of the seating arrangement. With Dynamic HTML, however, it would be possible to
show the seating layout, and to enable the user to click a potential seating section. Then, the
layout could be altered to hide elements on the stage that would be obscured from that seat. By
using Dynamic HTML, this user interaction could be done on the user’s local machine, elimi-
nating a complex application on the server.

The capability to dynamically change content from a single page is a very important feature of
Dynamic HTML. It would be possible to provide similar content with traditional HTML. You
could, for example, have an image map that represents the seats in the arena. When the user
clicks an area, the map could pass the data on to a CGI script, which could then provide the
browser with a new image based on the seating choice. You, however, can see that this would
involve significantly more steps, and several interactions with the server, which could result in
potential performance bottlenecks.

The capability to manipulate the contents of a page after loading is also important for user
interface features. Altering text or dynamic text expansion, for example, can be used to make
information more clear, or to provide explanations. Take a table of products that compares
features and price points. At the top of each column in the header would be the title for that
column, for example “MSRP.” A user might be curious about what “MSRP” means, and with
static HTML you could provide a hot link that takes the user to another page that would ex-
plain “MSRP.” What if the words “Manufacturers Suggested Retail Price” display when the user
passes the mouse pointer over the “MSRP” table header? Both scenarios serve the same pur-
pose, however, traditional HTML would involve clicking and loading a new page. It involves a
departure from the original page and data, for a simple term that should not require reloading
a page to redefine.

Advantageous Features of Dynamic HTML
With the limits of static HTML hampering web page design, Dynamic HTML attempts to bring
a new level of flexibility and development to the World Wide Web. Some of this is accomplished

11

1

I
Part

Ch

through the merger of existing technologies, such as Cascading Style Sheets and JavaScript.
Some of Dynamic HTML’s power comes from new features, such as data awareness and data
binding.

Dynamic HTML arms the designer or information architect with the capability to control layout
and information exchange that previously required complex or workload heavy server-side
scripting or troublesome workarounds. Some of the features of Dynamic HTML include the
following: layout precision, data awareness, dynamic styles, and dynamic content.

Layout Precision with Dynamic HTML
Creating visually appealing web pages without using some of the elements of traditional
graphic design can be a daunting task. Designers rely on their capability to perform a few
essential tasks when creating any sort of layout:

■ Specifying typefaces

■ Positioning images

■ Formatting text

Without these options, the designers are severely limited in their capability to design well. It is
much like asking a mechanic to fix your car with no wrenches. A skilled mechanic might still
be able to do the job, but the quality of the work will suffer.

Font Specification The capability to specify the typeface used on a page is one of the most
fundamental aspects of any design. What if, for example, your company logo makes extensive
use of a font that looks bad with Times Roman—the default font of many browsers. You could
certainly have all your employees change their browser fonts, but that would be a hassle. You
could put a disclaimer on the page noting that the page is best viewed with the Arial font. Most
users, however, are not likely to take special steps to view a home page.

What if you could specify the name of the font that the browser was to use, assuming it were
available. A number of fonts are automatically installed with Windows or the Macintosh operat-
ing system. These fonts could easily be used to design your web pages. Designers can specify a
font that would be at least closer to their ideal by using the standard fonts.

Even the use of a standard font does not guarantee that the font will be installed on all user
browsers. For dealing with this type of situation, the designer can specify a generic font family
or style, such as sans serif, so that at the very least the font is closer to the ideal.

Altering Text Dynamic HTML offers a unique dimension of text formatting: the capability to
change text on-the-fly. This can be useful in creating user interface features, such as highlight-
ing text links that are embedded in a document. You can change the color, size, and font of text
in a Dynamic HTML document based on any number of factors, such as the amount of time
after a page has loaded, or as a reaction to the user placing the mouse pointer closer to the text.

Advantageous Features of Dynamic HTML

12 Chapter 1 Dynamic HTML: A Defense

http://www.quecorp.com

An example of this technique is imaging a page that loads with nothing but plain, black text. As
time passes, say five seconds, the first link could automatically be highlighted in red. This
would alert the page viewer to the link’s presence and create a new interface for the web page.
The page might even reveal more links as time progresses, showing a new link on the page
every three seconds, designed to walk the reader through the page. The text could even
change color when the user passes the mouse pointer over it. This could be used to create a
text game, like a “word find” in which hidden links are embedded in the text.

Another way in which text manipulation could be used would be to replace the text on a page.
You might, for example, have an interactive game that has several status indicators, such as
“Number of Ships: 3.” By using the power of Dynamic HTML and text ranges, you can actually
replace the text on the page, changing “Number of Ships: 3” to “Only One Ship Left!” Chapter
10, “Dynamic Content,” takes a closer look at text ranges and changing content.

Dynamic content, or the capability to manipulate a page text or HTML content on-the-fly and
after the page has been loaded, is what makes DHTML so revolutionary. HTML has undergone
several minor changes since its inception, but none have had the same potential to revolution-
ize the way web pages are designed as dynamic content has.

Absolute Positioning To create the most visually appealing layout, designers are usually ver y
careful about the positioning of the elements that construct their designs. Static HTML does
provide some level of positioning by using the <ALIGN> tag: align left, right, and center.

Aside from aligning elements the way you would format text in a word processing program,
HTML provides little control for positioning elements on a page, based on the browser window
size, or positioning the objects relative to each other. HTML simply flows elements on the
page, and no mechanism for instructing the browser to position an element in a specific place
exists, such as 50 pixels from the left side.

These types of positioning for elements can prove very useful for making the best use of the
browser window, and for making sure that your pages are adjusted to the correct size for differ-
ent resolutions. You might, for example, design a page by using a 15-inch monitor running
600×800, aligning your images for that sized window. When your page is viewed on a 17- or
20-inch monitor at 1024×786, users might find the layout chaotic, or be faced with a lot of
wasted screen space. By taking advantage of positioning elements based on the screen size,
you ensure that your page always looks correct for the appropriate sized window.

Z-Indexing Absolute (and relative) positioning enable the user to specify the location of ele-
ments on a page by specifying coordinates that essentially map to the X and Y axis. Another
important aspect of positioning, however, is the Z-index.

Z-indexing is a means of assigning positioned elements to a layer on the page so that one ele-
ment can overlap another, and the designer can control which element will remain on top.

13

1

I
Part

Ch

Positioning elements with X and Y coordinates is fairly straightforward. A specified element
can be assigned coordinates, and will be positioned on the loaded page according to those
coordinates. This enables designers to position text anywhere on a page in relation to images,
or to align two images together precisely. When you add Z-index positioning to X and Y coordi-
nate positioning, you have a very powerful layout device.

Z-indexing enables designers to specify a position for an element along the Z axis. Although
this might not seem like much, it is a great step forward in web design. By combining the
capability to specify X and Y coordinates along with the capability to specify a Z position, new
effects become possible. Using this technique enables images to be placed on the page so that
they overlap. Imagine a map that has different areas of detail that are magnified when the
mouse passes over them. With positioning, the detailed areas could be separate images with
coordinates that are specified relative to the actual map. These elements could be located on a
different layer, and when the mouse passes over them, the image of the detail area could be
shown.

This type of application could be used for creating educational materials, such as geographic
maps, or maps that include information about a region, such as political news or economic
factors. It could also be used to create new user interface information for a particular site.
Imagine a site index that was an image map that displays an icon representing the content
instead of just showing a text description of an area on the site. The applications of positioning
and Z-indexing are discussed more in Chapter 9, “Layout and Positioning.”

Indexing and positioning can be combined to make layout for the web as flexible as layout for
print. It was mentioned earlier that it might not be possible for an organization to duplicate
their newsletter layout with the web. Positioning makes the transition between different
mediums a little easier, allowing for a greater continuity among the design of different
elements—print or electronic.

Data Awareness
Although it might seem like all the reasons that HTML was stifling are related to design, that is
certainly not the case. Design innovations tend to come to the foreground because of their
visual impact, but another area overlooked by HTML is that of incorporating data into web
sites.

Since the web’s inception, users have wanted to merge data applications and the web. The first
forms of CGI scripts were designed to get input from the user, and to provide the user with
some sort of feedback after filling out a form. As CGI scripting and server applications have
matured, many applications have started making extensive use of data and the web.

Take travel sites, for example, that provide users with airline ticketing and reservations. Many
of these sites enable a user to input data such as flight times and travel dates via a forms inter-
face. This information is then fed back to the web server, where it is used in conjunction with a
database application to look up information and then output it back to the user’s browser.

Advantageous Features of Dynamic HTML

14 Chapter 1 Dynamic HTML: A Defense

http://www.quecorp.com

Database applications play an important role in the development of the World Wide Web. As
businesses turn to the web to access and input data into more traditional applications, a bridge
is needed to bring data functions to the web.

Currently, HTML relies on a number of supporting technologies to achieve a poor form of data
integration. Adding some form of interactive data to a web page would currently require exten-
sive CGI scripting, or writing custom server-side includes. Of course, you could build data-
based applications with ActiveX or Java, assuming that complex database programming is in
your lexicon and schedule.

Dynamic HTML incorporates some new features that are designed to marry data access and
web pages. Techniques such as dynamic table expansion eliminate the need to produce custom
tables with CGI or server-side includes. Data awareness and data binding enable the develop-
ment of some fairly advanced database interfaces without the extensive programming knowl-
edge that might be required with Java or ActiveX.

Dynamically Producing Tables with Dynamic HTML HTML tables helped bring data to the
World Wide Web. Large amounts of information, such as product specifications or price com-
parisons, are generally best presented in a table for user viewing and analysis. Of course,
HTML tables can be generated on-the-fly on the server side through a database server and
server-side scripting. After the requested data is output to a script, the script builds a table and
outputs the HTML table to the client browser.

What if the browser were able to accept the output directly from the database application and
format a table dynamically? This scenario eliminates the server’s scripting step, thereby de-
creasing the workload of the site’s server, and increasing the speed of the transaction for the
end user. The result is a better data interface for everyone, and that is exactly what Dynamic
HTML is capable of achieving.

Dynamic HTML also enables tables to expand dynamically. This means that the user can view a
page before all the data for the table is finished downloading from the server. As more table
data loads, the table expands, resulting in a faster presentation of the overall page.

Imagine a pottery company, for example, that offered a set of plates with several different
glazing options. With each glaze the price is different and some other slight variations need to
be conveyed to a site visitor. Of course, the company could produce a new HTML file with a
different table for each possible glaze, but this would require more HTML authoring each time
a new glaze is introduced or discontinued. If the browser were capable of generating a table on-
the-fly, the company would save time, and the user could easily explore all available options.

Dynamic table creation gives Dynamic HTML some distinct advantages over traditional
tables—even tables that are generated by server-side applications. First, because the table is
generated dynamically, based on the incoming data, it can also be regenerated dynamically.
That means users could sort a table after it had been downloaded, a task that would require
passing instructions back to the server, and regenerating a table on the server with traditional
HTML. Because the data for the table is already incorporated into the page, that data does not

15

1

I
Part

Ch

need to be redownloaded. Instead, queries, filters, and sorting can be applied to the table, and
then the table can be regenerated.

This capability to manipulate data in tables without contacting the server gives Dynamic HTML
qualities that could be quite useful in business applications. The capability to perform data
manipulation using local database engines as opposed to the server lowers the burden placed
on the server and enables users to create customized data views dynamically. Dynamic
HTML’s data manipulation capabilities make it much easier to develop web-based database
front ends and database applications. Working with tables, data awareness, and data binding
are covered more in Chapter 11, “Introduction to Data Binding,” and Chapter 12, “Using Data
Source Objects.”

Creating “Data Aware” Objects with Dynamic HTML Dynamic HTML also uses a technique
called data binding that enables HTML elements to be bound to certain database records. This
enables records from a database to be incorporated into the HTML and displayed on the page
as a part of the HTML element. This technique can be used to create customized HTML ob-
jects that are different for each user based on records generated by the database application.

Say, for example, that you had a company that produced gumballs, and you want to design a
virtual catalog for your wares. You could create the catalog with the image of a gumball ma-
chine, with the knobs allowing you to select the merchandise that was displayed in the clear
“dome” portion of the gumball machine. By using data binding, you could create controls that
included the image of the merchandise, and bound those images to the gumball machine. You
could also then build the controls of the gumball machine to control the image that was being
displayed. The end result would be a nifty multimedia catalog based on data and images from
the company’s database. Chapter 12 talks more about data binding, and Part VI, “Real World
Dynamic HTML,” uses data binding to create an online catalog.

Dynamically Changing Pages after Loading
Dynamic HTML can be used to create pages that are dynamically generated at load time (for
example, setting the font on a page). The font is specified as the page is loaded, and the font is
actually changed before the page is finished loading. When the user accesses the page, the font
is already set. The capability to alter the appearance of web pages at load time—based on lay-
out instructions or data that is downloaded from the server—is one application of Dynamic
HTML.

Another way in which Dynamic HTML can be used to create a truly dynamic experience is by
changing the information on a web page at runtime, after the page has been loaded from the
server. Imagine, for example, that you wanted to make a web version of the children’s toy, Mr.
Potato Head. It wouldn’t be much of a user experience to see a different image of a completed
face each time the page reloaded. Instead, you would want to create a user experience that is
similar to the actual toy. This would involve a blank potato, and then the images of the parts
for the face. You would want users to be able to click an element, say a nose, and drag it into
position on the potato. This is what Dynamic HTML can provide: the capability to change data
on a page after the page has already loaded.

Advantageous Features of Dynamic HTML

16 Chapter 1 Dynamic HTML: A Defense

http://www.quecorp.com

Font and Color Manipulation Of course, in addition to repositioning images, you can alter
the qualities of text on your page. The font can be specified when the page is loaded, but the
fonts in Dynamic HTML can also be changed on-the-fly. This allows for text effects, such as
growing fonts or changing the color of fonts.

In fact, the entire color scheme of your pages can be altered by using Dynamic HTML. Ele-
ments that have color attributes can have those attributes altered after the page is already
loaded, which can create a variety of user experiences based on a single page download. This
type of content manipulation is covered later in Chapter 8, “Dynamic Styles.”

Text Manipulation In addition to altering the attributes of the text displayed on a dynamic
web page, it is also possible to alter the actual text itself. This capability to replace text ele-
ments on demand can be very useful. Say, for example, that you want to create a text menu that
expands as users pass over the items. You could create two descriptions for each item, one
short and one long. The menu would be built using the short descriptions, with the longer
ones waiting in the wings. By using Dynamic HTML, the menu could be designed to display
the longer description if the user passes the mouse over a menu element. This type of text
manipulation can be used to build complex user interfaces that are much quicker for the end
user than building a complex component, such as a Java applet, to accomplish the same task.
These sorts of content altering techniques are discussed in greater detail in Chapter 10, “Dy-
namic Content.”

Style Sheets
You might already be somewhat familiar with Cascading Style Sheets (CSS) as a technology
that has helped change the way that designers can approach managing web site and page
design. Style sheets enable an incredible amount of flexibility in web page design. They also
enable designers to add new levels of consistency to a site by enabling a design specification to
be developed that can be applied to different areas of the site, or used as a template for other
pages and sites.

Both Internet Explorer 4.0 and Netscape Communicator support Cascading Style Sheets. The
current version of the standard, Cascading Style Sheets, Level 1 (CSS1) is administered by the
W3C (World Wide Web Consortium).

Style sheets are the first leap forward in allowing designers freedom when designing for the
web. Style sheets allow designers to develop styles that can be applied to entire areas of a site,
and are the mechanism by which Dynamic HTML accesses many of the page formatting
details that are used to create dynamic styles and content. The integration of CSS is a critical
portion of Dynamic HTML, and CSS is covered in great detail in Chapter 4, “Cascading Style
Sheets Primer.”

17

1

I
Part

Ch

Increasing Web Site Design Control with CSS
The first benefit of CSS is that it gives designers more control over web page layout and
design. Using Cascading Style Sheets enables designers to specify color schemes, such as
making all <H1> head levels green. Additionally, CSS solves some of the design problems that
are typically associated with web layout, such as specifying whitespace, element spacing, and
indents.

Creating Web Site Templates with CSS
Cascading Style Sheets are also an important step for the web because they enable the
templatization of web sites. A style sheet can be created for the site, and then referenced by all
the pages in it. Style sheet templates enable the content to be managed almost independently
of the site’s design. This management subsequently leads to a higher level of specialization for
the site’s content creators, helps bring consistency to a site, and helps create an overall graphic
image.

Style sheets play a big role in Dynamic HTML because many of the features of Dynamic HTML
are actually implemented through a combination of style sheets and scripting. In fact, some of
the features, such as X,Y,Z positioning, are actually just different applications of the CSS Posi-
tioning standard. Dynamic HTML is a convenient way to group technologies together under
one topic, to make implementation a little easier—and hopefully more straightforward.

Scripting
Another fundamental component of Dynamic HTML is a scripting language that is used to link
elements together—a language that is used to manipulate elements after the page is loaded.
Without a scripting language, many of the features that are touted with Dynamic HTML would
not really be features at all. Of course, scripting languages can be used to add life to static
HTML as well, but scripting is an integral part of Dynamic HTML. In fact, without scripting
languages Dynamic HTML isn’t very dynamic.

Sure, you can use positioning to animate graphic elements on a page, but not without a script-
ing language. If, for example, you wanted a graphic image to move from left to right across the
page, you could do so with Dynamic HTML. The element could be positioned on the left as the
page loads, and then the position could be shifted to the right by using scripting.

JavaScript
JavaScript is a scripting language developed at Netscape and designed to be structurally similar
to the Java programming language. Because JavaScript was the first scripting language devel-
oped for use on the World Wide Web, it has become quite a popular language for scripting web
sites. Therefore, it is supported by both IE 4.0 and Communicator, and remains a convenient
way to script static HTML pages—and to control Dynamic HTML elements.

Scripting

18 Chapter 1 Dynamic HTML: A Defense

http://www.quecorp.com

JavaScript is actually a powerful scripting language, but is fairly easy to learn. Many of the
concepts and structures of JavaScript might be familiar to other web developers because they
are based on Java syntax. The following shows a rudimentary JavaScript:

<SCRIPT language=”JavaScript”>

 document.write(“Hello, world”);

 </SCRIPT>

The script simply writes the words “Hello, world” in the browser window. It’s only one line, but
it still does quite a bit. Because of its simple syntax, power, and widespread use, JavaScript is an
excellent choice for Dynamic HTML scripting. In fact, that’s why it’s the scripting language of
choice in this book. You can learn more about JavaScript in Chapter 5, “JavaScript Primer.”

VBScript
Visual Basic, Scripting Edition is a scripting language designed by Microsoft modeled after the
Visual Basic programming language. Visual Basic (VB) is one of the most popular tools among
corporate IS departments for creating in-house applications. Because of its popularity in the
corporate world and its ties to other Microsoft products, Visual Basic also makes a good choice
for scripting Dynamic HTML.

JavaScript and VBScript are very similar to each other, and there are advantages and disadvan-
tages to both, which will be discussed in later chapters. If you already are familiar with one
language, stick to it and don’t spend valuable time trying to learn the other language. In spite
of their different syntax, both scripting languages are well-suited for Dynamic HTML.

The Practicality of Dynamic HTML
Whenever you are evaluating a new Internet technology, there are always two fundamental
reasons to adopt the new technology: the practical factors and the cool factors. As you can see
from our feature summary, the cool factors certainly apply to Dynamic HTML. If you want to
create hip, cutting-edge material for the World Wide Web, you will undoubtedly adopt Dynamic
HTML. What about the practical reasons? Individuals might be able to justify learning a new
technology based on merit, or because it adds a new creative dimension to their home pages,
but businesses often need more solid, practical reasons before adopting a new technology.
Dynamic HTML addresses this business sensibility in three areas: enabling compelling web
presentations, facilitating site maintenance, and reducing server load.

Creating Compelling Web Sites
The single biggest practical reason for Dynamic HTML is that it helps create compelling web
sites. This might seem like an overlap of the cool factors, and it is somewhat. Many people,
however, are inundated with information on the web, and the only way to make that informa-
tion stick out in their minds is to create new, innovative pages that capture their attention. You
can certainly rely on older technologies to create visually appealing pages, but when other

19

1

I
Part

Ch

pages feature dynamic fonts, changing colors, or other special effects, it will be difficult to
maintain your audience without all the bells and whistles.

Another type of compelling page is a page that contains very current data so that users are
always aware of the changes. Waiting to download a table full of old, stale data is not nearly as
compelling as viewing a dynamically generated table that expands as new data is received.

Easier Maintenance
It might seem that a lot of effort could go into creating web pages with Dynamic HTML, and
that is an accurate statement. It is also important to remember that the features of Dynamic
HTML lend themselves to making maintenance easier. If, for example, your pages are created
with content from a database that is loaded and bound to Dynamic HTML objects, after the
page design is specified, new data can be pumped into the same design. The same holds true
for using style sheets as design templates. Style sheets enable you to design a site independent
of the content, so updating the page doesn’t mean redesigning it, as with earlier versions of
HTML. An investment exists in developing the original design, but with style sheets and data
binding, you can make surprisingly good use of existing resources after your site design is
finished.

Lower Server Load
Finally, Dynamic HTML can take the burden of processing information off of your server and
put it on the client. Animation, user interface elements, even simple data manipulation can be
moved from the server and CGI scripts into Dynamic HTML scripts. This makes the overall
interface faster for the end user because there is no need to reconnect to the server to update
information. Instead, the data is all downloaded and presented according to the user’s specifica-
tions. Sorting a table with static HTML involves sending the sorting parameters back to the
server, generating a new table, and downloading the new table to the user’s client—all the
while adding load to your server and keeping the user in suspense. A Dynamic HTML table
could be manipulated in near real-time on the user’s machine, making everyone a winner.

From Here…
As you can see, the progression of technology used for the World Wide Web has created the
demand for some new types of services, and new methods for designing and publishing web
pages. Dynamic HTML addresses some of the issues that have plagued the web for years,
which is a very long time in Internet years. Continue on to learn about some of the great new
features that Dynamic HTML has to offer, and to see what you can look forward to creating in
the future.

■ Chapter 2, “Dynamic HTML Overview,” takes a closer look at all the features that are
promised by Dynamic HTML, and what Dynamic HTML has delivered. More detail is
provided about some of the points that have been touched on in this chapter—to help
you realize the potential that lies in Dynamic HTML.

From Here…

20 Chapter 1 Dynamic HTML: A Defense

http://www.quecorp.com

■ Chapter 3, “Microsoft versus Netscape,” takes a look at the biggest issue facing Dynamic
HTML—the standards battle between Netscape and Microsoft over the implementation
of Dynamic HTML.

■ Part II, “Dynamic HTML Foundations,” examines the fundamental skills needed to start
creating your own web pages with Dynamic HTML, to ensure that you have the skills
you will need to work with Dynamic HTML, and have all the resources available at your
disposal.

■ Part III, “Inside Dynamic HTML,” begins an in-depth look at Dynamic HTML.

21

2

I
Part

Ch

D

2C H A P T E R

Dynamic HTML
Overview

 ynamic HTML offers a new set of extensions to HTML,
merged with supporting technologies, that enable the
creation of new and compelling web-based documents and
applications. Dynamic HTML allows the creation of real-
world business applications, and multimedia applications
that were impossible to create with static HTML. Dynamic
HTML also makes it easier to develop many features for
the web that were difficult and time consuming with static
HTML.

It is easy to talk about Dynamic HTML as if it were simply
one thing: a new version of HTML that adds all the fea-
tures discussed in this book; however, Dynamic HTML is
much more than that. It is really a collection of technolo-
gies designed to work together.

Dynamic HTML relies on Cascading Style Sheets as a
mechanism for altering the stylistic content of a page.
Without CSS, many of the color effects, font effects, and
other style attributes would not be so easy to alter. Dy-
namic HTML also makes extensive use of CSS Position-
ing. Layering and animation effects are a result of CSS
Positioning. Finally, Dynamic HTML uses JavaScript and
VBScript, scripting languages that get their bite in Dy-
namic HTML through the Dynamic HTML Object Model.
By combining all these technologies, you create what is
referred to throughout this text as Dynamic HTML.

Object Model

The Dynamic HTML Object Model
enables all HTML elements on a
page to be treated as objects.

Scripting

Scripting is an essential part of
instructing Dynamic HTML ele-
ments how to behave.

Cascading Style Sheets

CSS provide the glue for Dynamic
HTML web pages, and are a means
for controlling web page layout and
element styles.

Load Time/Runtime Content
Alteration

Dynamic HTML can manipulate
page content during its download to
the browser (load time). Microsoft’s
version of Dynamic HTML can also
manipulate the data after the page is
loaded (runtime).

Text Effects

Dynamic HTML allows for a variety
of text effects.

Multimedia/Animation

Dynamic HTML can create anima-
tion, transparency, lighting filters,
and blending effects.

Data Awareness/Data Binding

Data awareness and data binding
enable Dynamic HTML to work
directly with data from database
servers.

22 Chapter 2 Dynamic HTML Overview

http://www.quecorp.com

As you read on to discover the features of Dynamic HTML, be sure to keep in mind that many
of these topics will require more extensive outside reading or reference on your part. This text
covers all the technologies of Dynamic HTML and discusses the core Dynamic HTML entities
in great detail. Knowledge of some of the other topics, however, is quite helpful in exploiting
the technology to its fullest extent. Whenever possible, you are provided with an overview of
auxiliary technologies, but to cover them all comprehensively would really require a three
book set. So read on to discover what Dynamic HTML is about. ■

Defining Microsoft Dynamic HTML
What would a web technology be without a little friendly competition? Dynamic HTML is cer-
tainly no exception to this rule. Of course, both Microsoft and Netscape are developing com-
peting standards for Dynamic HTML, and the two standards are not compatible. This text
purposefully covers the Microsoft implementation of Dynamic HTML—largely because of
Microsoft’s willingness to submit their specification to the World Wide Web Consortium
(W3C) and the more “dynamic” nature of their technology. Chapter 3, “Microsoft versus
Netscape,” provides a comparison of the technologies so that you can get a better idea of how
the two technologies stack up, side-by-side.

Although Microsoft has chosen to submit Dynamic HTML to the W3C, it still has not been
ratified as a standard. When, and if, it finally is, there may be some minor changes to the

technology, and more browser vendors will support Dynamic HTML. Until then, you should consider the
Microsoft Dynamic HTML covered in this book to be a proprietary format, for use in conjunction with
Internet Explorer 4.0. ■

So, what is Microsoft Dynamic HTML? It is really a combination of new HTML attributes,
JavaScript or VBScript, and Cascading Style Sheets that work together to provide the features
outlined in this chapter. This chapter discusses Dynamic HTML features specific to Microsoft
Dynamic HTML. For a comprehensive analysis of Netscape’s implementation of Dynamic
HTML compared to Microsoft’s implementation of Dynamic HTML, refer to Chapter 3. Part II,
“Dynamic HTML Foundations,” moves on to cover the other technologies that you’ll need to
make Dynamic HTML work.

In addition to creating a glue that binds existing web technologies together, however, Dynamic
HTML does have a few tricks of its own up its sleeves. Data binding and data awareness are
both new features that Dynamic HTML brings to the playing field; however, one of the most
important and revolutionary aspects of Dynamic HTML is the Dynamic HTML Object Model.

The Object Model
Object-based technologies are not new to computing, and they are not new to the World Wide
Web. Dynamic HTML is one of many technologies that uses an object model to implement the

N O T E

23

2

I
Part

Ch

technology’s features and how they interact with each other. In fact, Dynamic HTML’s Object
Model gives it many of the capabilities that make Dynamic HTML a compelling new technology.

The advantage of Dynamic HTML is that all the elements on the page are treated as program-
mable objects. An image could be an object. So could a chunk of text, or virtually any type of
element that you might place on a web page. These objects have events that can be handled,
and methods and properties that can be manipulated through scripting.

The capability to script Dynamic HTML objects is one of the strongest aspects of Dynamic
HTML. The capability to script an object enables one element to influence the behavior of
another. With scripting, for example, you could create an object that passed its position to
another object, so that when one object moved, the other object moved in relation to the first
object. The same technique could be applied to data objects, such that the value of one object
influences the value or properties of another object.

The following example demonstrates a real-world scenario of how objects are used with Dy-
namic HTML. Suppose you were designing a page for a car dealership that had an image of a
car that was for sale on the page. To the right of the car’s image might be a list of features. As
the user passes their mouse pointer over each of the features, that feature could be automati-
cally highlighted on the image. To do this, each of the tags that describes a feature needs to be
able to capture the event from the mouse movement. Then through a script, it needs to be able
to control the state of the image. All this is accomplished through the object model.

Taking advantage of the object model allows Dynamic HTML to become even more than mere
extensions to HTML. Although the Dynamic HTML Object Model is not particularly complex,
it is important to understand how objects relate to each other, and how they handle events,
such as mouse clicks and mouse movements. The Dynamic HTML Object Model is discussed
in detail in Chapter 6, “Dynamic HTML Object Model.”

On the surface, the Dynamic HTML Object Model might seem like it is a complicated model
for working with HTML, but quite the contrary is true. The Dynamic HTML Object Model is
quite simple: it exposes HTML elements on a page as objects. In spite of its simplicity, the
object model adds an important feature to Dynamic HTML—event bubbling. Event bubbling is
discussed in Chapter 6, but the most important thing to learn about it now is that Dynamic
HTML objects can either deal with events (such as mouse clicks) or they can “bubble” up to
another object. If, for example, you pass the mouse over an image, and the image has not been
scripted to handle the event, then the event is passed up the chain to the next object, such as
the document. This type of event handling can help you develop some complex user interfaces
without having to develop complex event handling routines. Event handling is covered in more
detail in Chapter 7, “Event Handling.”

Exposing the elements on a page through the object model and providing elements with the
capability to capture events makes it easier to develop interfaces. But develop interfaces using
what? There needs to be a mechanism to create the interaction between elements that have
been described, and that mechanism is scripting.

The Object Model

24 Chapter 2 Dynamic HTML Overview

http://www.quecorp.com

Employing JavaScript or VBScript with
Dynamic HTML

Dynamic HTML needs a tool to make many of the dynamic changes previously discussed.
HTML tags offer one level of dynamic interaction, but the capability to script Dynamic HTML
objects gives the technology more power.

If, for example, you wanted to take two elements and link them so that they move together, you
would need some sort of mechanism to communicate position information from one object to
the other. The mechanism that you would use is a scripting language, such as JavaScript or
VBScript.

Microsoft refers to JavaScript as JScript, however, Microsoft is the only entity supporting
JavaScript to do so. Because the language is referred to by its full name in all other

documentation, and other outside texts, it is referred to as JavaScript in this text. ■

JavaScript is a scripting language developed by Netscape—and is included in the Navigator and
Communicator software. Microsoft also offers support for JavaScript in Internet Explorer 4.0,
and it can be used as a scripting language for Dynamic HTML components.

JavaScript is a useful scripting language because of its widespread support, its easy-to-use
object model, and its syntax based on the Java programming language. If you are not already
familiar with JavaScript, you can learn more about it in Chapter 5, “JavaScript Primer.”

In addition to allowing Dynamic HTML scripting with JavaScript, Microsoft has also developed
a scripting language based on Visual Basic called VBScript. VBScript offers many of the same
features and extensibility as JavaScript, but might be a better choice for individuals who are
already familiar with Visual Basic. In actuality, the scripting languages are not that different. If
you have a mastery of one, learning the other should not prove a difficult task. If, however, you
are already comfortable with one of the languages, there is no compelling reason to learn the
other one. After all, both languages can accomplish the same tasks. Why reinvent the wheel?

Although VBScript is not covered extensively in this book, Appendix C, “Using VBScript In-
stead of JavaScript,” contains a detailed comparison of the two scripting technologies.

Communicating Between Objects
Scripting is the principal method that enables communication between Dynamic HTML ob-
jects. To create complex new user interfaces and new designs that take advantage of Dynamic
HTML’s capabilities, you will need to rely on using different elements together. It might be
possible to use one simple Dynamic HTML object to add a new font to your page, or to create
some other design aspect. But generally, you want to use more than one Dynamic HTML ob-
ject in conjunction with another.

To communicate information from one Dynamic HTML object to another, you need to employ
a scripting language. To manipulate Dynamic HTML objects, you also need to use a script to
pass the parameters to the Dynamic HTML object—or to manipulate the parameters.

N O T E

25

2

I
Part

Ch

Putting the Dynamic in Dynamic HTML with Scripting
Dynamic HTML wouldn’t be very dynamic without the incorporation and functionality of script-
ing. Without the capability to script Dynamic HTML, many of the features would be reduced to
load time features, without the capability to change items on-the-fly, which is the power of
Dynamic HTML. Without scripting, it might be possible to specify a new font, but it wouldn’t
be possible to change the font size of a link when the mouse passed over it. It would be pos-
sible to position elements in a layout, but not to move them relative to each other.

If, for example, you wanted to change the size of a font after the page was loaded, how would
you pass along the point size to your text element? After the page is loaded, the point size can-
not be changed without using a script that will increase the point size of the font based on
whatever event you specify, such as a mouse-over or click.

The Importance of Cascading Style Sheets
In an effort to address many of the design issues problematic for the early web, Netscape and
Microsoft, among several other influential companies, collaborated to develop a technology
called Cascading Style Sheets (CSS). Cascading Style Sheets represents a way of defining at-
tributes for HTML elements, and applying those attributes to the entire page, or even to an
entire site.

A style enables web authors to set an attribute for an HTML tag that can be applied globally.
The <STYLE> tag, for example, could be used to set the indent for a page to ten spaces. A style
can also be used to establish guides for a specific element, such as specifying that all <H2> tags
should be displayed in red. By defining a style once in the document, and applying it to all the
elements, authors can save time coding, and easily change attributes by assigning a single
<STYLE> tag to an HTML element—rather than manually changing every occurrence of the
HTML element in a document.

Another advantage of Cascading Style Sheets is that individual style tags can be grouped to-
gether into a single file. This file could contain all the style elements for a page design, and
would be referred to as a style sheet. The style sheet can then be included in any file using the
<LINK> tag, or an @import statement. This enables the actual style definitions to reside in a
physical file that is separate from the HTML page to which it is being applied. This gives de-
signers incredible flexibility to define a global style sheet for a site, and then manipulate indi-
vidual styles on a page by page basis by including one style sheet in several different HTML
pages.

So how do Cascading Style Sheets fit into Dynamic HTML? First, CSS can be used to control
the appearance of HTML elements—what would happen if you could script changes to style
sheets? Well, you’d get Dynamic HTML. In fact, the link between Dynamic HTML and Cascad-
ing Style Sheets is so tight that it would be almost impossible to separate CSS from Dynamic
HTML.

You might recall mention of layout and positioning with CSS that is taken advantage of by Dy-
namic HTML. In fact, Dynamic HTML layout, and X-,Y-, and even Z-index positioning are all

The Importance of Cascading Style Sheets

26 Chapter 2 Dynamic HTML Overview

http://www.quecorp.com

directly from style sheets. The Cascading Style Sheets specification enables absolute and rela-
tive positioning of HTML elements, and establishes a Z-index for layering. Dynamic HTML
makes use of these positioning features by combining them with JavaScript to dynamically
change the positioning of an object. Similarly, animation effects can be created by manipulating
the positioning parameters of a style sheet with JavaScript or VBScript code.

Chapter 4, “Cascading Style Sheets Primer,” covers the implementation of Cascading Style
Sheets and provides a tutorial on working with style sheets, because it is such an essential
component to Dynamic HTML. Chapter 9, “Layout and Positioning,” discusses the issues of
Cascading Style Sheets Positioning in greater detail.

Adapting Content for the Browser
Using load-time Dynamic HTML enables you to configure your page for a particular browser.
You can query the browser to see how the user environment is set. Changing your page’s
color scheme, changing the display font, and adjusting your content to the size of the browser
window are all examples of how to use Dynamic HTML at load time so that your pages are
presented in the best light to the end user. Because first impressions are so important, this
certainly adds a new dimension to designing for the web.

Controlling Content at Load Time
One of the most apparent applications of Dynamic HTML is to change the appearance of a web
page at load time, depending on the conditions established by the end user, or their browser.
You might, for example, have a graphic that you want to be scaled to fill the entire browser
window when the page loads. Because you really have no way of knowing how big the user’s
monitor might be, or how big they might have set their window, you cannot know how big your
image should be. The way to solve this problem is to have the image scaled dynamically at load
time. Your script could obtain information about the browser’s window size while the image
was loading. The image could then be scaled appropriately, and then displayed to the user.
Because all this happens as the page is loading, and before the user offers any real input, this is
referred to as a load-time feature. Of course these types of manipulations are not limited to
images. Text, and even color schemes, could also be altered on-the-fly to give more choices to
the user as to how a page is viewed.

Customizing Content for the User
Most of the Dynamic HTML features that you will take advantage of at load time involve pre-
paring your page to be viewed for a particular user or browser. You could use a browser cookie,
for example, to determine whether a user had visited the page before, and if they had, you
could use a Dynamic HTML script to alter the page presentation for them. This would enable
you to have a “new user” version of the page constructed and displayed on-the-fly.

27

2

I
Part

Ch

Browser cookies are text files that are stored on a user’s machine that enable the web
server to store information about the user locally so that on future visits the content of the

page can be adjusted to that user. Cookies are used extensively to keep track of all sorts of informa-
tion, although the most common use is to track what online advertisements a user has seen. That way,
when a user revisits the site, the server can check the cookie and make sure the user is greeted with
ads they haven’t seen. ■

This type of manipulation can help you create pages that are designed to communicate on a
more intimate level with the site’s visitor. It can create the illusion that a web page was de-
signed specifically for the user, or it can help keep a user returning to the site because the
information is customized and relevant.

Dynamically Altering Content at Runtime
In an effort to make Dynamic HTML as “dynamic” as possible, Microsoft implemented many
features that enable HTML objects to be manipulated both before and after the page has
loaded. This runtime feature is a catalyst for making the content that you have created truly
dynamic—in the sense that even after the page has loaded, the content can be changed and
manipulated.

This type of content manipulation allows several new features that were not possible before,
such as dynamically expanding outlines, changing text content, and repositioning objects.

Expanding an Outline View
Enabling changes at runtime allows for more flexibility in the presentation of information to
users. You might, for example, have some content that is presented in the form of an outline.
Although it is possible to have the entire outline displayed on any normal HTML page as text,
it would be more visually attractive, not to mention functional, to enable the outline to be ex-
panded and collapsed by clicking an element in the outline. Figure 2.1 shows an example of
how you can use expanding outline views to create an index for your site.

This type of effect is one example of how you can manipulate the content of a web page at
runtime, and provide the user with more flexibility over how they view the data that is con-
tained on your pages.

Changing Text Content on an Already Loaded Page
Another way to manipulate text on a page involves replacing the default text with new text—
based on a mouse event. You could, for example, have some text that was a riddle, and when
users clicked the riddle, the text of the riddle would be replaced by the text of the answer.
Changing the text on the page can open the door to building complex user interfaces and
menu systems by changing and replacing text in addition to the expanding and collapsing of
outlines previously mentioned. The techniques for altering text in this manner include event
handling, which is covered in Chapter 7, “Event Handling,” and textRange objects, which are
covered later in Chapter 10, “Dynamic Content.”

N O T E

Dynamically Altering Content at Runtime

28 Chapter 2 Dynamic HTML Overview

http://www.quecorp.com

Changing Object Position on a Page
Finally, one of the most compelling reasons for Dynamic HTML is the capability to change the
layering and positioning of objects at runtime. This allows the user to grab elements and repo-
sition them on a page, without reloading the page or the elements.

The technique of moving elements on a page could enable the creation of any number of differ-
ent user interfaces, or even the creation of customized games. Figure 2.2 shows a Mr. Potato
Head style game called Alien Head, in which the user can move various fruits and vegetables to
create an “Alien Head.”

In fact, this capability to move elements on the page dynamically will be the technique used to
create the Pin the Tail on the Donkey game that you will build in Chapter 16, “Pin the Tail on
the Donkey.”

More practical applications can also be built around this capability, such as training applications
that involve dealing with complex diagrams. Another application would be to create children’s
educational games involving matching different graphic elements.

FIG. 2.1
The Internet Explorer
site index demo shows
collapsing outlines in
action. When the user
clicks a major heading,
the minor outline points
are exposed.

29

2

I
Part

Ch

Dynamic HTML and Multimedia
The capability to reposition elements on the page and the capability to change the position of
those elements leads to a higher level of multimedia with Dynamic HTML. After all, creating an
animation is simply moving an image on the screen—add a soundtrack playing in the back-
ground and you are on your way to multimedia presentations with Dynamic HTML. In fact,
Dynamic HTML has some special allowances for multimedia, including animation, and ActiveX
Controls to enable filtering, transparency, and a variety of other multimedia effects. You can
find out more about the integration of high-level multimedia with Dynamic HTML in Chapter
13, “Introducing Multimedia.”

Animation Effects
Several mechanisms currently exist that can be used to create animations on the web. One type
of animation is supported through animated GIFs (showing several different images in rapid
succession so that the image appears to be moving). This type of animation would be appropri-
ate for making a cartoon character’s mouth move, for example; however, what if you wanted to
move a cartoon character across the screen?

Images can be positioned with X and Y coordinates by using Cascading Style Sheets, and those
coordinates can be manipulated with scripting languages. Therefore, by using animated GIFs
and Cascading Style Sheets together, you can produce some complex animations.

FIG. 2.2
The Alien Head demo
enables the user to
dynamically position
page elements at
runtime.

Dynamic HTML and Multimedia

30 Chapter 2 Dynamic HTML Overview

http://www.quecorp.com

Dynamic HTML also offers some new multimedia components in the form of ActiveX Controls
that enable you to create path animations and manipulate images on-the-fly. Some of these
effects are demonstrated on the Microsoft site, as shown in figure 2.3.

The animation example in figure 2.3 shows the manipulation of two images using one of the
ActiveX Multimedia Controls to set the images in motion. Although the effect is not the same
as an animated GIF, it enables a greater range of motion and loads faster. You can create quite
complex animations that require little time to download, and even less time to actually start in
motion.

Filtering, Blending, and Alpha Channel Graphics
Animation is not the only graphical effect that is offered through Dynamic HTML. With the
incorporation of ActiveX Controls, a variety of fairly advanced graphics techniques are also
available.

It is possible to apply lighting filters and blends to light sources with Dynamic HTML so that
you can create an artificial tint to images on your page, or easily create the illusion of a spot-
light, or other light source that appears to be illuminating your page or a single element. Dy-
namic HTML offers Alpha Channel support, which allows you to easily create transparent
images or text. Combined with overlapping, you can use these techniques to create a variety of
different transitions. You can use transparency with the Alpha Channel to dissolve text into an
image, or to create a watermark effect with a logo on your page. By combining filters, lighting

FIG. 2.3
The animation demo
showcases Dynamic
HTML’s capability to
animate 2D objects with
layering and positioning.

31

2

I
Part

Ch

effects, and animations, Dynamic HTML helps bring the web one step closer to the multimedia
capabilities of CD-ROMs. The ActiveX Mulitmedia Controls that are a part of Dynamic HTML
are covered in greater detail in Part V, “Multimedia and Dynamic HTML.”

Data Binding: The Power of Dynamic HTML
One of the most powerful aspects of Dynamic HTML is the capability to handle and manipulate
data. Data binding is a Dynamic HTML technique that enables authors to take data directly
from a database application on the server, and assign the current record to an HTML object.
This allows the data to be displayed as if the data were a part of the original HTML code. Data
binding allows the author to build a web-based interface to database applications—a function
that was previously limited to high-powered web development tools such as Java.

Prior to Dynamic HTML, merging database applications with the web was a slow and tedious
process. Along with building a custom interface between the web server and the database,
interface problems would involve complex CGI workarounds, or customized application devel-
opment with a technology such as Java. With data binding, the web can actually be used as the
interface to business applications. The capability to include database records directly into
HTML code provides simple solutions for previously complex tasks. Figure 2.4, for example,
shows data being read from the server and incorporated into a simple browsing interface.

FIG. 2.4
The Microsoft data
binding demo shows
how data can be
dynamically incorpo-
rated into an HTML
object for display.

Data Binding: The Power of Dynamic HTML

32 Chapter 2 Dynamic HTML Overview

http://www.quecorp.com

This type of simple interface could certainly be expanded, and eventually developed into a
more robust database front-end. The result would be a database application that could be ac-
cessed via the web. The benefits for developing database systems are pretty far reaching, as
companies could develop simple database applications with web-based interfaces not only for
customers via the Internet, but also for internal applications. As more users begin to use web
mechanisms for intranet application development, the combination of data tools and the web
make intranet applications a viable and appealing alternative to customized in-house application
development with C or Visual Basic.

Creating Tables On-the-Fly
Data can be incorporated into web pages automatically by using the table generating features
of Dynamic HTML. Dynamic HTML has the capability to take data rows from database servers
and convert them automatically into HTML tables. This offers two distinct advantages over
traditional HTML table generation. First, the tables generated by Dynamic HTML are ex-
panded dynamically. This means that as soon as the browser receives data, it begins to build
the table so that the user does not have to wait for the entire table to download before they can
start seeing data.

Secondly, tables that are generated by Dynamic HTML can be manipulated at the browser
level. Dynamic HTML-generated tables can be queried, sorted, and filtered, all without contact-
ing the original data source—more importantly, without reloading any of the table data or
HTML code. This might not seem like a big deal, but let’s look at an example of a customer
database with 100 customers in it. With traditional HTML, the table would need to be down-
loaded and drawn. After the table is complete, let’s say the user wanted to sort by reverse
alphabetical order. This would involve contacting the data source, passing it the new data
parameters—with which it would sort the data—create a new table, and redownload the table
information.

With Dynamic HTML, after the data is downloaded, the data could be sorted in reverse alpha-
betical order by passing the instructions to the table script. The table is sorted and redrawn all
on the clients machine, without ever contacting the server.

Making Elements Data Aware
Dynamic HTML also allows HTML elements to be created that are data aware. Data awareness
is just another way of saying that certain HTML objects are designed to receive input from data
objects as a part of their HTML code. You could, for example, build an index card that would
display the customer’s name at the top and the address below. The name and address informa-
tion would actually come from the database server, but would be read by the browser as if they
were part of the HTML page. This gives Dynamic HTML the power to create database inter-
faces.

Data binding and awareness make the creation of data aware form fields possible. These fields
accept input that are automatically processed by the proper script to be pushed onto the proper
data server source. This provides a sort of feedback mechanism, or more importantly, the
means to update records in the database, and not just to display them, as shown in figure 2.5.

33

2

I
Part

Ch

Application Building with Dynamic HTML
It might seem like all these Dynamic HTML features are just designed to add new cool ele-
ments to web pages, and that certainly is one application for many of the new features of Dy-
namic HTML. Animation and text effects could add some spice to some of the dull web sites
that are available on the net. In addition to these seemingly superficial web design improve-
ments, Dynamic HTML harnesses a lot of potential in other areas.

Keep in mind that many business are beginning to rely on the Internet more—for both exter-
nal and internal business applications. Until now, building web-based interfaces for many busi-
ness applications required the use of a language such as Java, which is capable of reading data
from servers without being unreasonably slow. Dynamic HTML opens another door to creating
user interfaces for a variety of complex applications, not the least of which are business data-
bases.

Because of the flexibility and the blending of different web technologies to create Dynamic
HTML, very little can’t be done with some variant of Dynamic HTML. Only time will tell what
innovations Dynamic HTML will bring to application and interface development, but as more
people turn to the net as a resource, Dynamic HTML’s strength in interface creation should
place it in a good position.

From Here…
Don’t feel overwhelmed if your head is spinning from all this Dynamic HTML information. A
lot of different components of Dynamic HTML make up a large number of new features. Be-
cause Dynamic HTML is not one single technology, it can be difficult to pin down what is and
what is not Dynamic HTML. Don’t worry if you don’t feel that you are an expert.

The following chapters guide you through more detailed coverage of the components of Dy-
namic HTML:

■ Chapter 3, “Microsoft versus Netscape,” compares the features of Dynamic HTML
supported and implemented by Netscape Communicator versus the features supported
and implemented by Internet Explorer 4.0. Be prepared for a battle to the finish!

FIG. 2.5
Data awareness
enables data
application creation
with Dyanmic HTML.

From Here…

34 Chapter 2 Dynamic HTML Overview

http://www.quecorp.com

■ Part II, “Dynamic HTML Foundations,” covers the technologies that you will need to
develop Dynamic HTML pages. This part consists of four concentrated chapters:

● Chapter 4, “Cascading Style Sheets Primer” covers the basics of understanding
and using Cascading Style Sheets.

● Chapter 5, “JavaScript Primer,” covers the basics of understanding and using
JavaScript, one of the preferred scripting languages used by Dynamic HTML.

● Chapter 6, “Dynamic HTML Object Model,” talks about the object model used by
Dynamic HTML that treats all HTML elements on a page as mutually aware
objects.

● Chapter 7, “Event Handling,” covers the importance of event handling in Dynamic
HTML-generated web sites.

■ Part III, “Inside Dynamic HTML,” takes you through the ins and outs of implementing
specific features of Dynamic HTML.

35

3

I
Part

Ch

W

3C H A P T E R

Microsoft versus
Netscape

Understanding Dynamic HTML

What makes Dynamic HTML so
dynamic anyway? Learn how the
marriage of existing technologies is
paving the way for the next genera-
tion of web content.

Scripting Languages

JavaScript or VBScript? Figure out
which one is the best for you and if
either have a future with the evolu-
tion of Dynamic HTML.

Style Sheets

Cascading Style Sheets and
JavaScript Style Sheets. What are
the advantages of each? Which style
sheets are worth your time and
effort? Make this decision for
yourself.

Microsoft’s Role in Dynamic
HTML

As usual with groundbreaking new
technologies, Microsoft has ven-
tured into some proprietary applica-
tions of Dynamic HTML. Learn
what they are and what they can do
for you.

Netscape versus Microsoft

A handy chart that delivers the
information you need on which
Dynamic HTML features are sup-
ported or not supported by the
latest browser efforts in the ongo-
ing struggle between these
cybergiants.

hat would new standards be without a little competition?
Well, this is a much debated topic in the computing indus-
try. Some argue that by competing for the dominant posi-
tion in new technology, the technology itself advances
faster. Others argue that this rapid development and com-
petition hurts users of the technology. Web developers are
either forced to choose a side, and face the possibility of
choosing wrong, or hedge their bets and develop on two
platforms. Advocates of cooperation argue that by working
together, companies can create solid technologies based
on standards that would enable web developers to easily
develop cross-platform and cross-product web sites.

As you can see from the preceding chapters, Dynamic
HTML is an attempt to compensate for many of the prob-
lems that existed with previous versions of HTML. A great
deal of potential exists in web development for Dynamic
HTML technologies, and that has led to the common
reaction in the computing industry—both Microsoft and
Netscape are developing competing standards for
Dynamic HTML.

36 Chapter 3 Microsoft versus Netscape

http://www.quecorp.com

Dynamic HTML is suffering the same fate as other web technologies. You only need to look at
ActiveX and Java to see how intense the battle for web standards can get. This chapter takes a
look at the differences between Microsoft’s and Netscape’s implementations of Dynamic
HTML and how those differences might affect your web site development. Hopefully, this
analysis will help you decide which implementation to follow. ■

Working with the W3C Consortium
The World Wide Web was developed to allow the exchange of information easily between
researchers—regardless of the type of computer they were using or their location. Of course,
in the original stages of development, there were only a few browsers with limited features.
Even in the early stages of web development, standards were crucial to ensure that newly
developed browsers were capable of displaying the same information as their predecessors.

The two primary standards of the web are the Hypertext Transfer Protocol (HTTP) and the
Hypertext Markup Language (HTML). Without some common ground for these basic web
technologies, HTML documents that were created for one web browser would not necessarily
work with another browser. As a result, an organization called the World Wide Web Consor-
tium (W3C) has been working to ensure that the technologies that are used on the web are
standardized in some fashion. Nonetheless, the existence of a standards organization has not
stopped vendors from attempting to implement their own special features. A classic example of
this is the infamous Netscape <BLINK> tag. Netscape has a history of implementing special tag
support into versions of Netscape Navigator software and then attempting to use their wide
support base to manipulate their innovations into the standard. Of course, Microsoft employs
similar techniques, and the resulting mixed support for additional features has led to the all too
familiar “This page best viewed with…” message that is frequently seen on web pages.

Unfortunately, this message violates the basic spirit of the web. Tim Berners-Lee, developer of
the web at CERN, offers this opinion on using proprietary features:

“This comes from an anxiousness to use the latest proprietary features, which have not been
agreed upon by all companies. It is done either by those who have an interest in pushing a
particular company, or it is done by those who are anxious to take the community back to
the dark ages of computing when a floppy from a PC wouldn’t read on a Mac, and a
WordStar document wouldn’t read in WordPerfect, or an EBCDIC file wouldn’t read on an
ASCII machine. It’s fine for individuals whose work is going to be transient and who aren’t
worried about being read by anyone.”

Unfortunately, users of Dynamic HTML are forced to choose between Microsoft’s proprietary
implementation of Dynamic HTML, or Netscape’s proprietary implementation of Dynamic
HTML. Committing to one over the other will involve some tough decisions; however, the most
important aspect to consider is the features of which you want to take advantage. Adaptations
later will undoubtedly be necessary if a standard causes variations, but the benefits of being an
early adopter can result in a higher profile for your pages.

37

3

I
Part

Ch

The only hope that looms on the horizon for web developers is Microsoft’s recent standards-
friendly stance on web technologies. Microsoft has already submitted a draft specification of
their implementation of Dynamic HTML to the W3C for consideration as a standard. Of course,
the W3C could accept part or all the Microsoft draft, or they could merge the technology with
Netscape’s to create a hybrid. The fact that Microsoft has already submitted their technology
for consideration as a standard is a demonstration of their commitment to make the technology
work across the web.

Netscape has also contributed their technologies to the W3C in the past, but Netscape gener-
ally has tried to strong arm the standards organization slightly by continuing to support propri-
etary implementations. In the case of Dynamic HTML, Netscape has not submitted their
standard at all, in spite of the fact that Netscape often touts their solutions as open standards.
You can be assured, however, that if a Dynamic HTML standard is adapted, both companies
will likely alter their technologies to comply with the basic standards—and then continue to
contribute their own special features. Until then, you will have to hedge your bets on the tech-
nology and features that you want to implement, and the strength you feel each company
wields in the development community.

This standards debate does not end with Dynamic HTML. If you remember that Dynamic
HTML is actually based on several different technologies all tied together, the technologies
used to author Dynamic HTML (such as scripting and style sheets) are also the subject of
standards debates.

Defining “Dynamic” in Dynamic HTML
A central issue in the debate between Microsoft’s and Netscape’s implementations of Dynamic
HTML is what dynamic means. A useful way to extrapolate this definition is to examine the
process by which web pages are loaded:

1. The user specifies the address of the site and/or the page that they want to view by
clicking a link or specifying an address.

2. The client (that is, Netscape or Internet Explorer) contacts the site’s web server to
request information.

3. The server determines from the initial request what pages should be downloaded to the
client, and sends those pages, graphics, and other page elements to the client.

4. The client interprets the HTML and any other special instructions (such as Java applets
or ActiveX Controls) and displays the page.

Each of these steps presents opportunities for the browser and the server to pass information
to each other that could be used to customize the page information that is eventually displayed.
When the client initially contacts the server, the client gives the server some information about
the client’s configuration, such as the client version and the IP address of the client. You may
have seen pages that display some information about your client, such as displaying “Greetings
199.18.207.25”, or something along those lines. This is an example of passing information be-
tween the client and the server. The information passed between the client and the server is
the same information that is used in a server’s log files.

Defining “Dynamic” in Dynamic HTML

38 Chapter 3 Microsoft versus Netscape

http://www.quecorp.com

Any time information is exchanged between client and server, the information can be manipu-
lated. The content of a web page, for example, could be changed on the server by randomly
rotating the page that was served after each contact—subsequently resulting in the creation of
a novelty page. A better application of this opportunity to change web page content would be to
alter content based on client information instead of some arbitrary content change.

A limited amount of customization can be performed based on information passed between the
client and the server, most of which requires the intervention of CGI scripts or preprocessed
information that is included by the server. Both of these techniques consume server resources
because processing must be done on the server. These techniques also slow down the page
loading for the user, because the client must wait until the information from the server is down-
loaded before displaying the page.

Additionally, it would be beneficial to be able to change some characteristics of web pages that
cannot be determined from the information passed between the client and the server while the
page is loading. Scaling a page to fit within the size of the browser window is a good example.
Previously, the design of a page needed to be independent of the window size. Of course, the
text flow might have been altered when the user resized the window, but the size of the graphic
elements would not change, so the layout of the page would be adversely affected.

This is one area where Dynamic HTML allows a new type of control over content. Dynamic
HTML as implemented by both Netscape and Microsoft enables the manipulation of pages
before they have been downloaded by the browser, based on information fed to the server by
the user. The Netscape Dynamic HTML demo shown in figure 3.1 is an example of how Dy-
namic HTML can be used to manipulate pages.

FIG. 3.1
The Netscape Stella
Chelsea Associates
demo resizes the
window based on
information the user
enters about the
resolution of their
monitor.

39

3

I
Part

Ch

Dynamic HTML enables you to define page attributes (such as size, element layout, and font
style) that can be changed by browser specifications, entered by the user, while the page is
loaded, and then displays those changes immediately. This is one of the benefits of Dynamic
HTML.

Both Microsoft’s and Netscape’s implementations of Dynamic HTML offer the capability to
alter web pages at load time. What occurs after load time is where the two implementations
begin to diverge.

Netscape essentially defines dynamic as the capability to alter web page content at load time.
Under the Netscape Dynamic HTML paradigm, you can alter the layout of a document, posi-
tion page elements, and alter the typeface and style of fonts used on your web pages at load
time. Unfortunately, this load time restriction severely limits what can be accomplished after
the page has been loaded. To compensate for the lack of changes that can be made to content
at runtime, Netscape supports layers, which can be shown and hidden at runtime, but many of
the features that are supported by Microsoft’s implementation of Dynamic HTML at runtime
aren’t possible.

Microsoft’s implementation of Dynamic HTML adopts all the same features as Netscape’s
Dynamic HTML. The Microsoft implementation adjusts positioning and layout at load time. It
also specifies font attributes at load time. In addition to the supporting features of Netscape’s
Dynamic HTML, Microsoft’s Dynamic HTML also offers a host of other features, such as the
capability to dynamically alter style sheets (dynamic styles), the capability to create textRange
objects to alter page content (dynamic content), the capability to dynamically sort table content
(data binding), and the capability to associate HTML elements with database functionality (data
awareness).

Of course, even the syntax for implementing Dynamic HTML features are incompatible be-
tween Netscape’s and Microsoft’s versions. The fundamental difference between Netscape’s
Dynamic HTML and Microsoft’s Dynamic HTML, however, is that Microsoft defines the term
dynamic as the capability to alter the content at runtime in addition to at load time. Microsoft’s
Dynamic HTML enables the font attributes to be altered after the page has been loaded.
Microsoft’s Dynamic HTML also enables elements to be repositioned after the page has
loaded. This type of manipulation could be used to create multimedia transitions and animated
content. Many push channels created by using the CDF, for example, are also created by using
Dynamic HTML techniques. Figure 3.2 shows the font and element position changes made at
runtime.

Allowing the manipulation of page elements and content after the web page has been loaded is
an example of how Microsoft has made Dynamic HTML more dynamic. Microsoft’s implemen-
tation of Dynamic HTML makes a number of applications of the technology possible that are
unfeasible with Netscape’s version of Dynamic HTML. Some of the possibilities enabled by
Microsoft’s runtime Dynamic HTML include interactive pages and complex user interfaces for
web-based applications.

Defining “Dynamic” in Dynamic HTML

40 Chapter 3 Microsoft versus Netscape

http://www.quecorp.com

Scripting: JavaScript and VBScript
The glue that holds Dynamic HTML together is the scripting language that binds elements
together, and manipulates the content. Without a solid scripting environment, Dynamic HTML
fizzles quickly.

Of course both Microsoft and Netscape support scripting, and both support some web stan-
dards. For example, JavaScript, the default scripting language of the web is supported by both
versions of Dynamic HTML, although Microsoft likes to refer to JavaScript as JScript.

The 1.1 version of JavaScript is a supported scripting language for Dynamic HTML for both
Netscape Communicator and Internet Explorer 4.0. Netscape, however, has expanded
JavaScript with a number of extensions designed to be used in conjunction with their push
technology called Netcaster. Netcaster actually supports JavaScript version 1.2. This should not
affect much of the development work being done with Dynamic HTML, but it is always a good
idea to keep these kinds of discrepancies in mind when developing content for the web.

Even though Microsoft supports JavaScript for Dynamic HTML, they also elected to support
their proprietary scripting language—Visual Basic Script (VBScript). The decision to support
VBScript allows a little bit of flexibility in scripting choices, but was largely incorporated to
capitalize on the popularity of Visual Basic among corporate and small application developers.
Because Visual Basic has an extensive development community, supporting a scripting lan-
guage based on the popular language makes Dynamic HTML scripting more accessible to
Microsoft’s installed user base. If you already have experience with Visual Basic, this can be a
boon; however, if you do not, JavaScript is a very straightforward scripting language and well
supported as well. Without doing additional development in Visual Basic, JavaScript is a stron-
ger choice.

FIG. 3.2
The Acrobats with Style
demo shows how
graphics can be
manipulated with
Dynamic HTML after the
page has loaded.

41

3

I
Part

Ch

There are also some other differences in the supplementary technologies that each implemen-
tation supports. Netscape has extensive Java support, with JavaScript and supporting Java
applets that can control Dynamic HTML objects. Microsoft also has JavaScript support,
VBScript support, and support for Java applets and ActiveX Controls. In fact, many of the ad-
vanced multimedia features for Microsoft Dynamic HTML require the use of ActiveX Controls
to work properly. Netscape has announced that in future versions they do plan to offer ActiveX
Controls; however, the current Communicator release does not offer support for ActiveX
Controls.

The bottom line here is that Netscape supports two widely supported technologies—JavaScript
and Java. Microsoft supports these two technologies, in addition to adding a number of propri-
etary technologies, such as VBScript and ActiveX Controls. What this means is that you can
develop your Dynamic HTML using Java-related technology, such as applets and JavaScript,
and it will be relatively easy to port your pages between Netscape Communicator and Internet
Explorer. Relying on ActiveX and VBScript to develop your pages, however, restricts your
audience to Internet Explorer users.

Cascading Style Sheets and JavaScript Style Sheets
Without scripting, Dynamic HTML might not be dynamic, but style sheets play an equally
important role in creating Dynamic HTML-generated sites. All the layout features in Dynamic
HTML are implemented through style sheets.

Style sheets offer the support to create different font styles, to specify different fonts in HTML
documents, and to provide more flexibility to control all the similar elements on a site without
modifying each element individually. Additionally, style sheets are responsible for the object
positioning methods in both vendors’ implementations of Dynamic HTML.

The positioning aspects of style sheets are what enable Dynamic HTML to reposition elements
on a page, based on the information that is received from the browser at load time. Addition-
ally, style sheets provide the mechanism for creating layers. With layers, elements can be
overlapped, or hidden and revealed, to create a number of different effects. In figure 3.3, for
example, layers are used in Internet Explorer to create a new style of web-based interface. By
creating buttons that are linked to the layers through scripts, the layers can be revealed or
hidden through user interaction, creating a user interface that is built on Dynamic HTML.

The capability to manipulate positioning and to control layers is essential to the functionality of
Dynamic HTML, and the most widespread type of layering is found in Cascading Style Sheets.

Cascading Style Sheets and JavaScript Style Sheets

42 Chapter 3 Microsoft versus Netscape

http://www.quecorp.com

Throughout the text, you will see references to HTML tags, objects, and elements. Keeping
track of these might seem confusing at first, but it is really quite simple.

An HTML tag is the markup tag used to define how text should look. <H1>, for example, is an HTML tag
used to create a headline. After you have created the headline:

<H1>This is an element</H1>

the tag, and the text it is formatting is an HTML element. Finally, by exposing the element through the
Dynamic HTML Object Model, the element can become an object with more properties that can be
manipulated:

<H1 ID=”myheadline”>This is an object</H1> ■

The Cascading Style Sheets (CSS) specification is a means of defining style attributes and
assigning those styles to various HTML objects, such as specifying a color for all <H2> heads,
or assigning a basic font type to all the text elements on a page. Cascading Style Sheets offer an
incredible degree of flexibility for altering and controlling layout and design because style
sheets can be globally applied to all the pages on a site, or included in each file individually.
This feature is particularly powerful, because it gives designers the power to separate the
design of the site from the content. This means that content can be easily edited without a lot of
aesthetic reformatting. It also means that the design or look of a site can be completely re-
vamped without complex content editing, because style sheets allow the separation of content
and design elements.

By creating a standard CSS for a site, the site can easily maintain a high level of consistency
among the elements on a site, and site redesigns are simplified by altering the style sheet file
instead of altering each page individually. The power of style sheets, however, comes from the
capability to apply a global style to pages, and then override the style by specifying inline styles
for specific pages within the web site. This creates flexibility in creating special elements,
which could be used to construct a user interface, for example.

N O T E

FIG. 3.3
The Lakes and Sons
example demonstrates
layers and dynamic
positioning.

43

3

I
Part

Ch

Microsoft’s and Netscape’s versions of Dynamic HTML offer support for Cascading Style
Sheets. This is a boon for designers for several reasons:

■ Cascading Style Sheets are simple to use—The format and syntax for CSS is
straightforward and easy for designers to grasp. It affords them the control they are
used to with other graphic design software.

■ Cascading Style Sheets have been in widespread use for a while on the net—
Because designers and developers are familiar with the Cascading Style Sheet specifica-
tion, the development work involved in learning a new support technology to use CSS
and Dynamic HTML is lower.

■ Cascading Style Sheets are a W3C specification—Because the CSS specification has
been recommended for industry-wide adoption by the W3C, the use of Cascading Style
Sheets is supported by leading browsers. It also means that no variants need to be used
when designing with CSS for Netscape or Internet Explorer.

These reasons make CSS an obvious choice for support in Dynamic HTML. For that reason,
both Netscape and Microsoft use the CSS specification for Dynamic HTML, which bolsters
Microsoft’s claim to support standards, and lends standard support to Netscape.

Although both vendors offer CSS support, Netscape also offers support for a proprietary tech-
nology called JavaScript Style Sheets (JSSS). JSSS offers many of the similar features to CSS,
but uses a syntax that is based on the JavaScript language. For developers who are familiar
with JavaScript, this might be an easier syntax to learn, however, because JSSS is not sup-
ported by any browser other than Netscape, your sheets are limited to use in Navigator and
Communicator. For that primary reason, JSSS makes a poor choice for general web develop-
ment. Although it might prove to be a good choice for corporate intranets—where the content
will only be viewed with Netscape products—JSSS can be a viable alternative to CSS. For gen-
eral purpose Internet application, however, CSS is clearly a superior choice for style sheet imple-
mentations, the CSS specification will be covered in Chapter 4, “Cascading Style Sheets Primer.”

Microsoft Specific Features of Dynamic HTML
In many instances, Netscape and Microsoft offer one common technology, and then offer their
own competing technologies as an alternative. This is the case with scripting languages. Both
companies offer the JavaScript scripting language, and Microsoft offers the alternative
VBScript. For style sheets, both vendors offer Cascading Style Sheet support, and Netscape
also offers support for JavaScript Style Sheets. Generally speaking, it is better to stick with the
widely supported standards than to adopt proprietary solutions.

A number of features, however, are only supported by Microsoft’s implementation of Dynamic
HTML. A number of these technologies have already been discussed. Microsoft’s Dynamic HTML
has the capability to reposition objects on a page dynamically, at both load time and runtime.

Microsoft also offers a host of multimedia effects, such as filtering, blending, and transparency,
which are only available through a combination of multimedia objects and ActiveX Controls.
These types of features make it possible to use Microsoft’s Dynamic HTML to create new web-
based multimedia applications and to create new web-based users interfaces that are difficult, if

Microsoft Specific Features of Dynamic HTML

44 Chapter 3 Microsoft versus Netscape

http://www.quecorp.com

not impossible to create using Netscape’s technology. Multimedia effects are covered in detail
in Chapter 15, “Multimedia Filters and ActiveX Controls.”

The most significant differences, however, lie in the data technologies supported by Microsoft
that are not available by Netscape’s Dynamic HTML. These features give Dynamic HTML the
power to integrate web content with information from databases, without extensive server
application development or CGI scripting—the result is an increase in speed and functionality
for the end user.

The first technology that is supported by Microsoft Dynamic HTML is data awareness. Data
awareness provides features such as dynamic table generation, which enables HTML tables to
be populated automatically by table data provided directly from a database server. Dynamic
table generation eliminates the need to hard code large, complex tables, or to slow user interac-
tion by generating tables on the server side through CGI scripts. This increases the speed for
the end user, and enables you to provide more dynamic types of data through web services.

Imagine, for example, a small stock brokerage that wants to create a portfolio management
tool. Of course, the portfolio tool could be developed by using CGI scripts that would query a
database of stock prices, reloading the data each time the customer refreshed the page. Of
course, this would put a heavy load on the firm’s server, and wouldn’t be very fast for the cus-
tomer. With Dynamic HTML, the firm could create a portfolio management tool that used data
awareness and data binding to create tables that contained the data related to each holding in
the portfolio. The customer could then sort or change the view of the data without contacting
the server. Another important aspect would be that specific fields that change rapidly, such as
“current price,” could be updated independently of the rest of the data, lowering the demands
on the server, and increasing the speed for the customer.

Dynamic tables are also progressively displayed, or dynamically expanded, so that the table
and page load as soon as the first data from the server is received. This enables the end user to
view the page content almost instantly, but as more table data is downloaded, the table expands
to accommodate the new data.

The second aspect to Microsoft’s Dynamic HTML support is the capability to perform data
binding. Data binding enables specific data records to be bound to HTML objects. This enables
the incorporation of live data from a database server into active HTML objects. Figure 3.4
shows an example of how live data can be integrated into HTML objects.

Data binding makes it possible to create web-based interfaces for web applications. Previously,
this could only be accomplished through complicated programming and CGI scripting to offer
a similar level of functionality. Remarkably, this method still does not come close to rivaling the
performance of Dynamic HTML. By utilizing data binding, through data source objects and the
tabular data control, an astonishing degree of data flexibility can be achieved with Dynamic
HTML, with increased speed and efficiency. Chapter 11, “Introduction to Data Binding,” and
Chapter 12, “Using Data Source Objects,” cover these data techniques in detail.

Of course, to take advantage of these data features, you are forced to use the Microsoft imple-
mentation of Dynamic HTML. Netscape’s Dynamic HTML does not offer any comparable data
support.

45

3

I
Part

Ch

Feature Comparison Chart
All this discussion of the different features of Dynamic HTML will undoubtedly have you won-
dering what features are supported by which browser. Keep in mind that in the war between
browsers, the feature set is always changing and these features could change even further if a
standard is elected by the W3C. To clarify what features are currently supported, table 3.1
shows a list of the features of Dynamic HTML, and which features are supported by Microsoft
and which are supported by Netscape.

Table 3.1 Netscape versus Microsoft Dynamic HTML Feature Support

Dynamic HTML
Feature Netscape Support Microsoft Support

Object Model Yes Yes

Event Generation Yes Yes

Event Bubbling No Yes

Load Time Yes Yes
Manipulation

Runtime No Yes
Manipulation

Dynamic Styles No Yes

FIG. 3.4
Data binding enables
data records to be
displayed in HTML
objects.

continues

Feature Comparison Chart

46 Chapter 3 Microsoft versus Netscape

http://www.quecorp.com

Table 3.1 Continued

Dynamic HTML
Feature Netscape Support Microsoft Support

Cascading Style Yes Yes
Sheet Positioning

JavaScript Style Yes No
Sheet Positioning

Canvas Mode Yes Yes

Java Applets Yes Yes

ActiveX Controls No Yes

JavaScript Yes Yes

VBScript No Yes

Data No Yes
Awareness

Data No Yes
Binding

Multimedia No Yes
Extensions

Backward No Yes
Compatibility

Submitted Proposal No Yes

Available for Yes Yes
Windows, UNIX,
and Mac

Free Third-Party No Yes
Licensing

Both Netscape and Microsoft support the Dynamic HTML Object Model and event generation;
however, only Microsoft’s Dynamic HTML supports event bubbling, which is covered in Chap-
ter 7, “Event Handling.” Event bubbling enables events that are generated by a Dynamic
HTML object to be passed to its parent object for handling.

Likewise, both versions support load-time modifications, such as specifying fonts and other
formatting information; however, only Microsoft supports runtime modifications that enable
Dynamic HTML to perform multimedia effects and dynamic styles, such as changing the fonts
on-the-fly, or moving images.

47

3

I
Part

Ch

Cascading Style Sheets are supported in both implementations, as are Java applets, and the
JavaScript scripting language. Netscape also offers support for its proprietary JavaScript Style
Sheets, while Microsoft offers proprietary support for its Visual Basic scripting language,
VBScript.

Only Microsoft offers any type of data support through data aware objects and data binding,
which enables data records to be bound to specific HTML objects.

Finally, Microsoft has proposed its version of Dynamic HTML to the W3C as a web standard,
and offers free licensing of the technology to third-party developers and vendors. Microsoft
has also ensured that their version of Dynamic HTML degrades to older browsers to display
dynamic content statically so that the information is not lost, although its dynamic qualities
might be.

From Here…
This chapter points out the slightly different implementations of Dynamic HTML offered by
Netscape and Microsoft. Microsoft hopes to make their implementation the Internet standard
by submitting it to the W3C, but Netscape offers some interesting technologies as well.

Part I, “Dynamic HTML Basics,” covered all the types of applications and features of Dynamic
HTML that are discussed at greater length throughout the rest of the book. If you have read
about a technology in this section, rest assured that a more detailed explanation with solid
examples lies in the chapters ahead. This chapter provided a comprehensive overview of the
Dynamic HTML technology so that you have an idea of how technologies from different ven-
dors compare. Because of the support for standards, and the complete features of Microsoft’s
Dynamic HTML, this book concentrates on those features. It is, however, not a complicated
task to adapt these techniques to Netscape’s Dynamic HTML implementation.

Part II, “Dynamic HTML Foundations” looks at the technologies and concepts that make Dy-
namic HTML tick. These chapters will provide you with comprehensive coverage of the core
technologies that encompass Dynamic HTML, and how those technologies function on their
own, and in conjunction with DHTML. The chapters in this section of the book are as follows:

■ Chapter 4, “Cascading Style Sheets Primer,” covers the basics of understanding and
using Cascading Style Sheets.

■ Chapter 5, “JavaScript Primer,” covers the basics of understanding and using JavaScript,
one of the preferred scripting languages used by Dynamic HTML.

■ Chapter 6, “Dynamic HTML Object Model,” talks about the object model used by
Dynamic HTML that treats all HTML elements on a page as mutually aware objects.

■ Chapter 7, “Event Handling,” covers the importance of event handling in Dynamic
HTML-generated web sites.

From Here…

48 Chapter 3 Microsoft versus Netscape

http://www.quecorp.com

IIP A R T

Dynamic HTML Foundations

4 Cascading Style Sheets Primer 51

5 JavaScript Primer 79

6 Dynamic HTML Object Model 111

7 Event Handling 137

51

4

II
Part

Ch

P

4C H A P T E R

Cascading Style Sheets
Primer

art I, “Dynamic HTML Basics” discussed how Dynamic
HTML is not so much a new type of HTML, as it is a col-
lection of technologies that are designed to work together
to help you manipulate the content of web pages. Tech-
nologies such as Cascading Style Sheets and JavaScript
are essential parts of Dynamic HTML. Without these
technologies, many of the features of Dynamic HTML
would not exist. JavaScript, covered in Chapter 5,
“JavaScript Primer,” is used to change the properties of
HTML dynamically. To take advantage of this capability to
treat HTML elements dynamically, however, there needs
to be a mechanism for assigning styles to elements that
can be changed. Cascading Style Sheets provide a mecha-
nism for creating styles that can be applied to pages or
even entire sites. This chapter covers the basics of Cas-
cading Style Sheets to give you an example of what can be
accomplished with the technology, so that in later chap-
ters you are prepared to integrate Cascading Style Sheets
with Dynamic HTML. ■

Style Values

Learn about style values and how to
assign them.

Cascading Style Sheets

Learn the fundamentals and pri-
mary components that provide
dynamic design and layout capabili-
ties.

CSS Syntax

Discover numerous ways to incor-
porate Cascading Style Sheets into
your basic HTML vocabulary.

CSS Positioning

Introduce yourself to the object-
oriented design and layout capabili-
ties provided by CSS Positioning.

52 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

The Elements of Style
Web design with HTML has never been as strong as graphic designers would have liked. With
the goal of the web being communication among many machines and browser types, features
that would aid graphic design were often initially overlooked. This was certainly acceptable for
early incarnations of the World Wide Web. Because the early adopters were often researchers
and educators, there was still an emphasis of content over form. However, as the web has ex-
panded into the personal and commercial realms, there has also been an increase in the atten-
tion paid to the style and design of web pages. Commercial interests are better served with
pages that are aesthetically pleasing as well as informational, and as more individuals use web
pages as forms of personal expression the nature of web page design has shifted.

For many designers, the structural limitations of HTML have caused many headaches and
design compromises. Whereas with print design the designer has total control over the appear-
ance of material, the web lends itself to viewer modifications. Compounding the problem with
HTML was a lack of graphic design and typographic controls, so the designer had no means
with which to modify font structure, precisely layout images and text, or even to control the
flow of text on a page. As HTML matured and tables were introduced, many designers found
compromises and workarounds to the problems of design, however Cascading Style Sheets
represent the first step in HTML toward answering the design problems for the World Wide
Web from the designer’s perspective.

A number of different style properties can be defined with Cascading Style Sheets. Some of the
types of elements that can be specified in style sheets include the following:

■ Fonts

■ Backgrounds

■ Text

■ Borders

■ Lists

The following sections go into more detail as to how these elements can be manipulated and
customized with Cascading Style Sheets.

Fonts
CSS brings designers the capability to manipulate fonts used on web pages, and in later chap-
ters how Dynamic HTML exploits these CSS properties for its font manipulation is discussed.
Some of the font attributes that can be changed with CSS include: font family, style, weight,
size, and color.

Backgrounds
Background styles for elements can also be specified and manipulated with CSS. This capabil-
ity can help minimize the tedious task of developing and laying out multiple GIF images and
manipulating elements around the background with complex tables. Some background

53

4

II
Part

Ch

elements that can be manipulated include: background color, transparency, images, scrolling,
and positioning.

Text
CSS offers the most design advances in the treatment of text. Because HTML has never been
designer-friendly, many designers may find the typographic control that style sheets introduces
to be one of the most compelling reasons to adopt Cascading Style Sheets.

CSS enables designers to fine-tune the following attributes of text: word spacing, letter spacing,
text styles, alignment, transformations, margins, and padding. When used in conjunction with
font properties, the text properties bring traditional typography to the web with the aid of CSS.

Borders
You can use CSS to manipulate the border properties of various HTML elements as well. This
can include image borders or table borders. The attributes that can be altered include color,
style, and width.

Lists
Formatting lists has always been awkward with HTML. CSS offers some relief with the capabil-
ity to specify list style, images, style types, and style positions. All these elements enable you to
customize how various list elements appear, and how they are altered depending on the order
in which they appear in the list.

Of course, this list of customizable properties afforded by CSS is by no means complete. For a
more complete overview of the properties defined by CSS and the details of the specification,
see Appendix B, “CSS and CSS Positioning Attributes.”

Defining Cascading Style Sheets
A Cascading Style Sheet is simply a set of definitions for how each of the HTML elements on a
page should be rendered, or how they should appear to the user in the browser window. In
straightforward HTML, each HTML tag has attributes that can be used to assign a value for
the characteristics of the element the tag is used to define. The following code, for example,
assigns values for the width and alignment attributes:

<HR WIDTH=85% ALIGN=LEFT>

The preceding line displays a horizontal rule line that has a length 85% the width of the window,
and is aligned with the left side of the window. The attributes define the style of that element.
Many HTML tags have attributes that can be used to define a style for a particular element,
and style attributes can be manipulated in several different ways.

In the previous horizontal line example, for instance, the WIDTH and ALIGN attributes define
how the horizontal rule line element appears. The WIDTH and ALIGN attributes within the
<HR> tag have no effect on any elements outside of this particular element, which renders a

Defining Cascading Style Sheets

54 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

line across the screen. Before CSS, designers were limited to specifying each of the attributes
on a tag by tag basis. Of course, this adds a lot of drudgery and time to site development, and it
also creates a huge headache if you want to change all the attributes for one element through-
out a site. Changing each of the references by hand is quite tedious, and even using search and
replace methods in an HTML editor can be tiresome.

The solution to specifying tags individually begins with the STYLE attribute. Returning to the
horizontal rule line example, the attributes of the <HR> tag are used to set the characteristics
of the horizontal line:

<HR WIDTH=85% ALIGN=LEFT>

Now take a look at a slightly different way to set the attributes of an HTML element. Take the
paragraph tag <P>, for instance. Before the development of CSS, it was only possible to use <P>
by itself to begin a new paragraph. In CSS, it can be used to specify many attributes, such as
the color, font, and indention of the paragraph. You can use the STYLE attribute with the <P>
tag to indent text as shown in figure 4.1. The HTML code for specifying text attributes in this
example is as follows:

<HTML>
<BODY>
<P>
This is a plain paragraph.
<P STYLE=”TEXT-INDENT: 30">
This is the paragraph indented.
</P>
</BODY>
</HTML>

The example in figure 4.1 shows that although one of the <P> tags is a standard HTML tag, the
other makes use of the STYLE attribute to add indentation. Styles used in this manner are
called inline styles. Inline styles enable you to use the STYLE attribute to customize elements;
however, inline styles do not eliminate the necessity of specifying style values for a group of
elements, such as all <P> tags on the page.

FIG. 4.1
Text formatting with and
without inline styles.

55

4

II
Part

Ch

When referring to an inline style, the term simply means that that particular style definition
appears in the HTML file with the HTML code it is being applied to. As you will see later,

CSS allows style sheets to be imported using the “@import” syntax, in which case the style is no longer
inline. ■

The CSS specification, however, allows for the specification of styles as style blocks in the
<HEAD> of HTML files. This enables you to specify a style globally for a document, as shown
in the following lines of HTML code:

<HTML>
<HEAD>
<TITLE>Sample HTML with Styles</TITLE>
<STYLE>
P { COLOR: GREEN; TEXT-INDENT: 30; FONT-FAMILY: SANS-SERIF}
</STYLE>
</HEAD>
<BODY>
<P>
This is a paragraph on a page with a global style.
</BODY>
</HTML>

Figure 4.2 demonstrates how style blocks globally specify a style for consistency throughout a
document.

In this example, the style is defined for the entire document, so that whenever the <P> tag is
used, the COLOR and TEXT-INDENT attributes are automatically applied to that element.
Assigning styles this way has its disadvantages.

■ Style blocks group all the styles in one location, so page content and page style can be
easily separated or edited.

■ CSS allows for multiple style specifications through classes.

These features of CSS are discussed later in the chapter in the section titled “Importing Style
Sheets.”

FIG. 4.2
A CSS style defined in
a style block.

N O T E

Defining Cascading Style Sheets

56 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

Another important aspect of the Cascading Style Sheets (CSS) specification is that it is a stan-
dard that has been adopted by the World Wide Web Consortium (WC3). As such, the CSS
specificaton is supported by both Netscape Communicator 4.0 and Microsoft’s Internet Ex-
plorer 3.0 and higher. This can eliminate many development hassles, and enables you to de-
velop style sheet–based designs that work on multiple browsers with little modification.

Style Sheet Syntax
Now that you have an idea of what style sheets are, take a look at how styles and style sheets
are defined in syntax.

Style sheets are collections of style properties that can be assigned to individual elements to
add style attributes to a tag that might not have been flexible before. With traditional HTML,
the <P> tag only represents a new paragraph, for example. Style sheets enable you to define a
property such as font or color with a specific value. The basic syntax for specifying style for an
element is as follows:

<TAG STYLE=”style: value”> blah </TAG>

In this case, <TAG> represents a standard HTML tag, the style is a CSS property, and value is a
property value that is accepted for the tag. To define a paragraph with green text, for example,
you would use the following syntax:

<P STYLE=”COLOR: GREEN”> Blah </P>

This sets the color of the text within the paragraph tags to green; however, other paragraph
tags on the page are not affected by the assignment.

CSS properties and their values are not case-sensitive. COLOR and color, for example, are
equivalent. Being consistent with tags, however, helps keep them separated from content

text. This may help others to read your code more easily. ■

You might notice that syntax used to assign the color is slightly different from standard syntax.
Rather than using an equals sign “=” to assign values, the CSS specification uses a colon “:”.
For instance:

<P STYLE=”COLOR=GREEN”></P>

is not correct. Assigning the value as “COLOR: GREEN” on the other hand, would be correct.
The style attribute must also be in quotation marks so that it is recognized as the style assign-
ment, and not as part of another attribute in the tag.

CAUTION

Browsers might recognize some style assignments that are made with an equals sign (=) rather than a colon
(:). You should get into the habit of using the colon right away, even if your browser recognizes an equals
sign. Using the colon ensures the compatibility of your code in other browsers, and also makes sure that
your code adheres to the standard for CSS.

N O T E

57

4

II
Part

Ch

Specifying Styles in the <HEAD> Section
Now that you know that single style assignments are not the most efficient way to define styles,
you are probably interested in specifying styles for your entire HTML file. You accomplish this
by placing the <STYLE> tag near the beginning of your HTML file. The <STYLE> tag must be
located within the <HEAD> tag, so that it can be parsed before the remainder of the HTML
code on a page. Because the <STYLE> tag specifies a block of styles, it must also have a termi-
nating (</STYLE>) tag as shown in the following lines of HTML code:

<HTML>
<HEAD>
 <STYLE>
 style definitions
 </STYLE>
</HEAD>
</HTML>

The actual definition of the style for an element looks somewhat different as well:

<STYLE>
P { COLOR: BLUE; TEXT-INDENT: 30}
</STYLE>

As you can see, some new elements are used when creating a global style, and a slightly differ-
ent format to establish the style. Here, the “P” is referred to as a selector that selects the para-
graph tag for a style property. The style itself consists of two separate property definitions,
“COLOR: BLUE” and “TEXT-INDENT: 30”. Multiple property definitions are separated by a
semicolon (;). The entire style assignment for the paragraph element is contained within curly
braces “{ and }” that signify the beginning and ending of the style for the element. Because
there are only two properties in this example, they appear on the same line; however, this is not
a requirement. The following syntax is also acceptable:

<STYLE>
P { COLOR: BLUE;
 TEXT-INDENT: 30}
</STYLE>

In fact, as your styles become more complex, using multiple lines and indentation will make
your code much easier to read.

Because not all browsers support CSS, you might want to use HTML comments to enclose your style
definitions so that they are not displayed by some browsers as text. For example:

<STYLE>
<!—
P { COLOR: BLUE; TEXT-INDENT: 1in}
—>
</STYLE>

The preceding code allows CSS-enabled browsers to process the style information, and enables older
browsers to ignore the <STYLE> tag as an unknown tag—and then ignore the definitions as an HTML

continues

T I P

Style Sheet Syntax

58 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

comment. Using the HTML comments can be a good way to easily maintain some level of backward-
compatibility with older browsers, without sacrificing new features or investing in costly redevelopment.
The practice of including comments in CSS HTML code is covered in more detail later in the section
called “Comments.”

Specifying Styles with Multiple Selectors
In some instances you might want to assign the same style to multiple elements. You might
want to assign the same font styles to all your headlines, for example, by using the various <H>
tags (H1, H2, H3). You can use multiple selectors just as you would multiple properties by
separating the selectors with commas. To make all the headlines on a page blue, for example,
you would write your HTML code as in the following:

<HTML>
<HEAD>
<STYLE>
 <!—
 H1,H2,H3,H4,H5,H6 { COLOR: BLUE }
 —>
</STYLE>
</HEAD>
<BODY>
<H1>This is Blue</H1>
<H3>This is Blue too! (Trust me!)</H3<BODY>
</HTML>

Assigning the same properties and values to all the <H> headers identified as selectors can be a
convenient shortcut when elements have similar style attributes, as shown in figure 4.3.

continued

FIG. 4.3
Defining styles by using
multiple selectors can
make the definitions
more efficient.

59

4

II
Part

Ch

Linking Style Sheets From Other Documents
Now you know how styles can be created by using inline styles, and how they can be defined as
style blocks in the <HEAD> section of a document. Both of these methods are easy ways to
utilize styles in your site, but another way is by linking style sheets.

Assume that there are some types of styles that you might want to define for all the HTML
documents on a site, and the pages for the site might span multiple directories, and almost
certainly multiple HTML files. You could write a series of style blocks to define all the styles for
your site, and then copy those blocks into each page on your site. Doing this would not only be
tedious, but it would also make each HTML file larger and harder to read.

CSS provides an easy solution—you can create a file with a .css extension that contains your
style definitions and then import or link that file to an existing HTML page. Assume, for ex-
ample, that you have created a file on your site called “globalstyle.css”, which contains all the
style information for your site. One way in which you can import this file into your HTML page
is to use the <LINK> tag. The link tag must be located between the <HEAD> tags in your
HTML for the link to be properly processed, as shown in the following lines of HTML code:

<HTML>
<HEAD>
<LINK REL=”stylesheet” HREF=”globalstyle.css” TYPE=”text/css”>
</HEAD>
</HTML>

When using the <LINK> tag to import a style sheet, it is important that the <LINK> tag
appear in the <HEAD> of the HTML document. The reason for this is the manner in which

HTML pages are processed by the browser. The pages are read and rendered in a linear fashion,
beginning with the <HEAD> and then following on to the <BODY>. Because the linked style sheet will
cause the browser to alter how elements in the <BODY> are rendered, the browser must have the style
sheet information before it begins to process the <BODY>, and the only way to force the browser to do
this is to include the <LINK> in the HTML file <HEAD> section. ■

This <LINK> tag uses several attributes to link a style sheet to the document in which it is
used. The REL attribute specifies the type of relationship the specified link represents. In this
case, the linked document is to be a stylesheet so that is the relationship that is specified. Next,
the link needs to know where the style sheet is, as denoted by the file name, or the complete
URL to the style sheet. If the page is in the same directory, the file name should be fine, but in
other instances, for example if the style sheet were in a different directory than the file, you
might want to use the full URL to be sure. Finally, the TYPE attribute defines the type of style
sheet that is being linked. In the preceding code example, the type is “text/css” because we are
using a Cascading Style Sheet. What if the site were using JavaScript Style Sheets? This is
where the difference might be indicated.

In fact, you can use multiple <LINK> statements in your HTML file to specify the style sheets
to be included in your page. You could, for example, have a site with different color schemes
defined for styles as defined in the following <LINK> statements:

N O T E

Style Sheet Syntax

60 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

<LINK REL=stylesheet HREF=”pastel.css” TYPE=”text/css”>
<LINK REL=stylesheet HREF=”rainbow.css” TYPE=”text/css”>
<LINK REL=stylesheet HREF=”midnight.css” TYPE=”text/css”>

If each of the files in the preceding code contained different style definitions, then one site style
could be created by using all three files. For purposes here, however, assume that each one of
these files uses the same selectors, just different values. In this case, if all three of these
<LINK> statements were included in one file, then the browser would use the style sheet file
specified in the last listed link as the default for the style sheet. The other choices for styles
would not be used by default, but some browsers offer support for allowing the user to specify
a file. Permitting a choice for the user enables you to add an additional level of customization
where the user can choose a style that is most aesthetically pleasing to them, resulting in a
user experience that meets your design needs and satisfies the user.

CAUTION

If you are using multiple <LINK> tags to build a global style sheet, keep in mind that none of the files can
contain conflicting selectors. If selectors conflict the default style attributes from the last link listed are used
for the conflicting selector.

Also keep in mind that if you are using the <LINK> tag to import style sheets, you will not be able to override
your global styles with inline styles. To override global styles with inline styles, you will need to use @import,
as described in the following section.

Importing Style Sheets
In addition to the <LINK> tag, another way you can associate a style sheet with a web page
without using a large series of style blocks is to use the “@import” statement. The “@import”
statement directs the browser to import the style sheet that is associated with a file. The follow-
ing HTML code shows how you would load a style sheet by using the @import statement:

<STYLE type=”text/css”>
 @import URL(“globalstyle.css”);
</STYLE>

The @import statement indicates that the style sheet to be used on this page is the
“globalstyle.css” file. The type attribute for the <STYLE> tag indicates that the type of style sheet
being defined (in this case, imported) is a Cascading Style Sheet. This is important, because it
is possible to use other types of style sheets for some browsers. Netscape Communicator, for
example, supports JavaScript Style Sheets.

Just as you can use the <LINK> tag to link multiple style sheets, you can also use the @import
statement to import multiple style sheets as shown in the following HTML code:

<STYLE TYPE=”text/css”>
 @import URL(“globalstyle.css”);
 @import URL(“specialstyle.css”);
 @import URL(“pagestyle.css”);
</STYLE>

61

4

II
Part

Ch

In the preceding example, three separate style sheets are combined by using multiple @import
statements. As is the case with the <LINK> tag, if conflicting selectors are in the imported style
sheets, the style specification in the last file is used. If, for example, the following selector ap-
pears in the globalstyle.css style sheet:

P {FONT-FAMILY: ariel; COLOR: red}

but the style specification in the pagestyle.css style sheet contains a conflicting selector,
such as:

P {FONT-FAMILY: serif; COLOR: blue}

the style from the pagestyle.css style sheet is used rather than the style from the
globalstyle.css style sheet, resulting in paragraph text being displayed as blue text in a serif
font.

The @import statement and the <LINK> tag do exactly the same thing, but appearances can be
deceiving, especially in this case. The <LINK> tag can only be used to import style sheet defini-
tions. It cannot be combined with local definitions, but the @import statement can. This is
actually a powerful tool because you can use an imported style sheet and then override specific
style declarations with a locally defined selector for use on a specific page as demonstrated in
the following example:

<STYLE type=”text/css”>
 @import URL(“globalstyle.css”);
 P {COLOR: black};
 H1 {FONT-FAMILY: sans-serif};
</STYLE>

In this example, the local style declaration overrides the globalstyle.css style sheet selector for
paragraphs or for any Level 1 heads. Similarly, you could use an inline style to override an
imported style for one specific element on a page.

This type of flexibility allows you to combine imported style sheets and local declarations so
that you can customize your styles specifically for various pages. This is the very flexibility for
specifying design elements that designers have been requesting for years, and it brings a new
level of control to web-based design.

Defining “Cascading” in Cascading Style Sheets
Several types of style sheets are available to various browsers; however, Cascading Style Sheets
offers some unique features. One of these features is “cascading,” which is so compelling it is
advertised in their name. So what exactly is “cascading,” and where does the cascading part
come into play?

The idea of cascading is simple. Rules determine how one style declaration can override an-
other. The order in which styles are defined, for example, is important in determining what
style is used. This is how you can use multiple <LINK> statements—and also how you can use
multiple @import statements combined with local declarations to override global style settings
in a particular document.

Style Sheet Syntax

62 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

Assume, for example, that you have a style sheet called “global.css” as defined in the following
HTML code:

<STYLE TYPE=”text/css”>
<!—This file functions as a global style sheet —>
P {COLOR: green; FONT-FAMILY: sans-serif}
H1,H4,H5 {FONT-FAMILY: serif; COLOR: blue}
H2,H3 {FONT-FAMILY: serif; COLOR: red}
</STYLE>

This style sheet specifies that all paragraph text will be in a sans-serif font, such as Ariel or
Helvetica, with the color set to green. The style sheet continues to define Level 1, 4, and 5
headers to be in a serif font, such as Times, with a color of blue. Finally, Level 2 and 3 headers
are also in a serif font, but the color is set to red.

Now, say that you have one page where you want to override the definitions for the colored
heads, and make all the headlines black. You could do this in one of two ways.

The first way to override the style sheet definition is to create another style sheet, called
“local.css” (defined in the following code example) that overrides the style definitions from the
“global.css” file:

<STYLE type=”text/css”>
<!—This file introduces some conflicting definitions —>
H1,H2,H3,H4,H5 {FONT-FAMILY: san-serif; COLOR: black}
</STYLE>

After establishing the font specifications in the “local.css” style sheet, if you use the following
import methods with your HTML file, the “local.css” attributes will override any selectors that
it has in common with “global.css”:

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
@import URL(“global.css”);
@import URL(“local.css”);
</STYLE>
</HEAD>
</HTML>

The style sheet overrides results from an ascending hierarchical order established for process-
ing style definitions. In this case, importing the “local.css” style sheet after the “global.css”
style sheet creates a style definition conflict. Because of the style sheet ascending hierarchy,
style definitions specified in the “local.css” style sheet are used.

Another way would be to use a style block, or an inline style to override the imported style
sheet, as demonstrated in the following HTML code:

<HTML>
<HEAD>
<STYLE TYPE=”text/css”>
@import URL(“global.css”);
H1 {FONT-FAMILY: sans-serif; COLOR: black}

63

4

II
Part

Ch

</STYLE>
</HEAD>

<H1> This head has been overridden in a style block</H1>
<P STYLE=”COLOR: black”>
The color of the paragraph text has been overridden by an in-line style.
</P>
</HTML>

In the preceding code, the @import statement is being used to import a global style sheet. The
style block that immediately follows the @import statement, however, redefines the style for
<H1> and overrides the imported style sheet. Then, later in the code, the <P> style is overrid-
den by specifying a style attribute directly in the tag. The results of this code are shown in
figure 4.4.

Establishing a protocol for how the definitions are processed is an essential part of Cascading
Style Sheets. These rules are summarized in table 4.1.

Table 4.1 Style Sheet Declaration Processing Hierarchy

Method Precedence

<LINK> Last style sheet linked overrides previous style sheets.

@import URL Last style sheet linked overrides previous style sheets.

Style blocks Overrides imported styles.

Inline styles Overrides imported styles and style blocks.

You can think of it this way, hierarchically, inline styles have the highest priority, followed (in
order) by style blocks, @import statements, and links. If you think about how the HTML file is
structured, this makes sense and follows a pretty logical order. The <LINK> and @import
statements come first, so after they are loaded and parsed by the browser, a style block can
be defined, and because that comes next, it can override linked and imported styles. Finally,

FIG. 4.4
Although the color for
the head and the
paragraph are defined
in a style sheet, they
are overridden by other
specifications.

Style Sheet Syntax

64 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

because inline styles are defined in the body of the HTML file, they are parsed last, and there-
fore, override all previous style definitions. This is cascading, and one of the reasons that CSS
is so powerful. It allows you to produce completely customized styles for your sites, and alter
those styles for special circumstances on an as-needed basis.

Understanding CSS Inheritance
In addition to having the style definitions cascade, CSS also incorporates a form of inheritance
that can simplify the process of defining styles. The examples used in this chapter so far have
all consisted of selectors that have mirrored individual elements as demonstrated in the follow-
ing simple line of code:

P {COLOR: red};

In the preceding line of code “P” represents the paragraph tag. Some more general HTML
tags, however, can be used to describe HTML pages such as the <HEAD> tag, or the <BODY>
tag, which can both be used to describe different areas of an HTML document as shown in the
following lines of code:

<STYLE>

BODY {FONT-FAMILY: sans-serif;
 COLOR: green;
 TEXT-ALIGN: justify;}
</STYLE>

This example specifies the style characteristics for the <BODY> HTML tag. The font will be a
sans-serif font, green, and justified. So what does that mean for text used within the <BODY>
tag? Well, the <P> tag is a “child” tag of the <BODY> tag—which is called the parent. This
means that <P> inherits the properties that are defined for the <BODY> tag, or in other words,
the <P> tag will be in a sans-serif font, green, and justified.

Although this might not seem like a big deal, it can be used as a shortcut to simplify your style
sheet creation. By specifying styles for parent tags, such as the <BODY> tag, you can easily
pass style properties on to other styles that you are going to use on your pages. For details
about what properties are inherited, refer to the Cascading Style Sheets specification in Appen-
dix B.

Comments
Finally, it is always useful to be able to add comments to any type of coding. Comments enable
you to document the code that you have written so that others can easily determine what your
code does.

CSS uses one form of the C/C++ notation for comments, placing “/*” at the beginning of a
comment, and “*/” at the end of the comment. You can see how comments are denoted in the
following:

<HTML>
<HEAD>
<STYLE>

65

4

II
Part

Ch

 /* This line is a comment. */
H1,H2,H3,H4,H5 { COLOR: blue }
</STYLE>
</HEAD>
</HTML>

Getting in the habit of commenting your code is a good idea, not just for others, but also for
yourself. You might need to go back and modify an extensive style sheet definition someday,
after having long forgotten exactly how you wrote it. Comments are a good way to find your
way around a definition, and a good way to make sure you remember important or tricky de-
tails of a particular style sheet.

CSS Properties Divisions
Cascading Style Sheet properties are divided into five broad categories for classification. These
classifications include font, color and background, text, box, and classification. The purpose of
these classifications is to bring elements together into categories that make sense for docu-
mentation, but also to aid in understanding how each property inherits values from another
property. Here is a breakdown of each of the divisions and the types of properties they contain.
Detailed explanations of the properties can be found in Appendix B.

Font
The font properties relate to the type and style of fonts that are used on a web page. These
properties enable you to manipulate the font face, style, size, and weight of a font being used,
and include properties such as the following:

■ font—A generic font property that can be used to specify multiple style properties with
one tag, such as size, family, style, and so on.

■ font-size—Enables designers to specify font-sizes.

■ font-weight—Enables manipulation of the font weight, ranging from light to normal to
bold (or heavy).

■ font-variant—Enables you to specify a variant of a font family, such as small caps.

■ font-style—Enables you to specify the style of the font, such as bold or italics.

■ font-family—Enables you to specify a generic font family for the font, such as serif or
script, to avoid using explicit font names.

Color and Background
The color and background properties can be used to alter the appearance of a page’s back-
ground, or they can be applied to HTML elements to change the attributes of that element,
such as changing the color of a border or font. Some of the color and background properties
include the following:

CSS Properties Divisions

66 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

■ color—A flexible and powerful property that can be used to alter the color value for
nearly any HTML element, ranging from a border to a table cell or a font.

■ background-color—Enables you to specify a color that will function as the background
color of an element. Although the property is often applied to a page as a whole, it can
also be used for specific elements, such as a positioning container.

■ background-image—Functions similarly to the background-color property, but enables
you to specify an image that is to be used in the background, rather than a solid color.

Text
The CSS text properties exist to alter the appearance of text on the page. These properties can
be used to refine the typesetting on a page, or to create specific text effects. Some of the text
properties are included in the following list:

■ word-spacing—Enables you to assign a unit of measurement to the amount of
whitespace that appears between words in text.

■ letter-spacing—Enables you to alter the amount of whitespace that exists between
letters of text.

■ text-transform—Enables the application of special effects to a group of text, such as
making the text all lowercase, or capitalizing the text.

■ text-align—Enables the designer to alter the alignment of text elements so that they are
aligned with the left or right side of the page, for example.

■ text-indent—Enables the creation of a standard indention so that elements such as
paragraphs will consistently be indented the same number of spaces.

Box
The box properties are used to assign property values to elements that essentially exist in a
“box,” such as blocks of text, the page, images, or positioning containers. These properties
enable the designer to manipulate attributes such as the margins, table cells, or borders.

■ margins—The margin properties include margin, margin-top, margin-bottom, margin-
left, and margin-right. These properties are used to define margins for elements using
the units of measurements and can be applied to individual elements or the entire page.

■ padding—Similar to margin properties, padding establishes a “buffer zone” around
elements to prevent them from overlapping. Padding properties include padding,
padding-top, padding-bottom, padding-left, and padding-right.

■ borders—The border properties include border-style, border-width, border-top, border-
bottom, border-left, and border-right. These properties are used to alter the border
attributes for elements.

■ width—Used primarily with CSS Positioning to specify the width of a positioning
container. This property is covered extensively in Chapter 9, “Layout and Positioning.”

■ height—Used with CSS Positioning to define the height of a positioning container. This
property is also covered extensively in Chapter 9.

67

4

II
Part

Ch

Classification
Finally the classification properties are used to create special classifications for elements on the
page. The display property, for example, is used to classify whether an element is visible or
hidden. These properties become increasingly important with dynamic styles later in Chapters
8 and 9.

■ display—Alters the appearance of an element by enabling the designer to classify an
item as visible or hidden. This can be used to create dynamic content by choosing what
elements on a page a reader may or may not be exposed to.

■ list-styles—Enables designers to specify how lists are to be formatted, including the
style of bullet points used.

Values
CSS properties accept values in a variety of formats, ranging from predefined keywords to
percentage values. It isn’t necessary to know all the value types that can be specified with a
particular property at this stage in learning CSS, but it pays to be a little more familiar with
some value types, such as measurement units, colors, and font attributes. After you have mas-
tered these values, you can use the reference in Appendix B to look up the specific values that
can be assigned to each property.

Specifying Measurement Units
Many of the CSS properties accept values for length or other measurements based on a num-
ber of different unit systems such as inches (in) or points (pt). Table 4.2 shows the various
types of measurements that are accepted by CSS.

Table 4.2 CSS Measurement Units

CSS Abbreviation Measurement

pt Points

pc Picas

ex X-height

em M-width

mm Millimeters

cm Centimeters

in Inches

px Pixels

Values

68 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

Because CSS is widely regarded as a tool for designers, many of the measurement values that
are accepted are rooted in desktop publishing. Values such as points, picas, ems, and x-height
all have their roots in graphic design and typography. More commonly used measurements are
inches and centimeters.

To specify letter spacing, you could use picas to specify the distance between individual letters
as shown in the following HTML code:

<HTML>
<HEAD>
<STYLE>
 P { LETTER-SPACING: 2pc }
</STYLE>
</HEAD>
<P>
SPACE
</HTML>

The output for this code displays the word “SPACE” something like figure 4.5:

FIG. 4.5
Specifying the distance
between characters.

The measurement is defined by following a numerical value with the abbreviation for the mea-
surement unit. In addition to being used for letter and line spacing, the units of measurement
are used with elements such as borders to define widths, or fonts to define size. The units of
measurement will also be important for positioning in later chapters.

Specifying Color
Defining color with Cascading Style Sheets is an important feature for web design and Dy-
namic HTML. Defining color in CSS can be accomplished in many ways.

The first method is to use a predefined natural language label. These predefined values are
limited, only about 128 inches in all. The values are listed in Appendix F, “Browser-Safe Hexa-
decimal Chart.”

Although these predefined color values do come in handy, in some instances you need finer
control over the color on your web pages.

69

4

II
Part

Ch

One alternative is defining the color with a hexadecimal value for color, in the format of
“#RRGGBB” where “RR” is a value for the red component, “BB” blue, and “GG” green. This is
really a variant of RGB color definition, but is helpful because of the widespread usage of hexa-
decimal values on the web.

Finally, you can define color by using the RGB values, either as integers or as percentages. You
could define blue, for example, as:

COLOR: RGB(0, 0, 9)

which would mean the red value was 0, green 0, and blue 9. Of course, it would be a very
bright blue! Similarly, you can use the same syntax, but replace the integers with percentages
as in the following:

COLOR: RGB(100%, 0%, 100%)

In this example, the mixture of 100% red, 0% green, and 100% blue would produce purple.

Having the option of natural language color names can make it easy to use highlighting colors
in a pinch. For finer design control, and the capability to specify custom color, the finer controls
of RGB values are very handy.

Specifying Font Values
Another flexible design aspect of Cascading Style Sheets is that they offer the capability to
specify information about the fonts that are going to be used on your pages. You can specify
font family, style, size, weight, and other attributes to get you more typographical control over
how your web sites appear. Say, for example, that you want to produce a site that has all sans-
serif fonts, but you want the headlines to be in italics. You could use the following styles to
make this a reality:

<STYLE>
H1,H2,H3,H4,H5 {FONT-FAMILY: sans-serif; FONT-STYLE: italic}
</STYLE>

In this style, the FONT-FAMILY property specifies that the typeface used for headlines should
be a sans-serif font. In addition, the heads are italicized with the FONT-STYLE property. Table
4.3 summarizes the CSS properties that are available when working with type.

Table 4.3 CSS Font Properties and Values

Property Accepted Values

FONT-SIZE integer, percentage

xx-small, x-small, small, medium, large, x-large, xx-large

FONT-FAMILY family name

serif, sans-serif, cursive, fantasy, monospace

Values

continues

70 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

FONT-STYLE normal, italic, oblique

FONT font-size, font-family, font-style

COLOR color

You will notice that some of the font properties can take a variable, such as “family name” but
also have specific values, such as “serif ”. This is because specifying an explicit font name might
not produce a useable result. You, for example, could use FONT-FAMILY to specify that you
want your body text to appear in the “Garamond” font; however, what happens if you specify
Garamond font and the user does not have that font installed?

One alternative would be to specify that you want the browser to use a “serif” font—which
Garamond is. Then the browser will choose a serif font that is installed on the system, and use
that to display the font. By using a generic family name, the designer can exert some control
over the design of the page without worrying about what the user has installed. However, that
doesn’t solve our original problem, which was a designer who wants to use Garamond, but
can’t be sure that font is installed. To address situations like this, CSS provides an even greater
degree of flexibility. Although one solution was to just use the generic font name, another
would be to use a specific font, but to also provide an alternative if the font is not available. This
is no problem for CSS. You can use multiple values with some of the font properties as shown
in the following HTML code:

<STYLE>
P {FONT-FAMILY: helvetica, sans-serif; FONT-STYLE: italic}
</STYLE>

The style definition in the previous example instructs the browser to use “Helvetica” as the text
font, provided the user has it installed on his system. If Helvetica is not available, the browser
substitutes a generic sans-serif font as described in the font specification.

Advanced CSS
Now that you have the basics of CSS under your belt, there are some other advanced features
that will become important as you learn how Dynamic HTML exploits CSS to manipulate ob-
jects. Some of these advanced features include the use of classes and element IDs that enable
you to specify multiple styles for HTML elements, or pseudo classes for commonly manipu-
lated HTML elements.

Table 4.3 Continued

Property Accepted Values

71

4

II
Part

Ch

Specifying Styles with Classes
With CSS you can specify different styles for an HTML element by employing classes to iden-
tify different styles for the same element. Classes enable you to create versions of a style that
can be applied by using the CLASS attribute in conjunction with the style in the text.

To define a class, you append a class name to the style selector in the style sheet. To define a
class for a head, for example, you could use:

H1.classname {COLOR: red}

that defines a class called “classname” that defines the color as red. The following line of code
demonstrates how to specify a class in an HTML tag:

<H1 CLASS=classname>This head would be red.</H1>

You can also define a class that is not associated with a specific tag, by omitting the selector:

.specialtext {COLOR: fuchsia}

The preceding line of code specifies a style class called .specialtext that is not associated with a
specific selector or HTML tag. This enables you to apply this style to different HTML tags by
using the “CLASS” attribute. This .specialtext class could then be applied to multiple HTML
elements, for example:

<H1 CLASS=specialtext>A Fuchsia Heading</H1>
<P CLASS=specialtext>Fuchsia body text as well!</P>

Here, the style we created called .specialtext is applied to both an <H1> tag and a <P> tag by
assigning them the style’s class name. The result is that both elements display the same style
characteristics from the same style definition, even though they are different tags.

You can define as many classes as you want, but keep in mind that if you define multiple classes
for an element, you need to use the CLASS attribute to specify which style should be applied to
an element as demonstrated in the following HTML code:

<HTML>
<HEAD>
<STYLE>
 P.REDTEXT {COLOR: red; FONT-FAMILY: sans-serif}
 P.GREENTEXT {COLOR: green; FONT-SIZE: 25}
 .blue {COLOR: blue; FONT-FAMILY: serif}
</STYLE>
</HEAD>
<BODY>
<P CLASS=REDTEXT>
This text will be red and sans-serif.
</P>
<P CLASS=GREENTEXT>
This text will be green, and larger.
</P>
<P CLASS=blue>
This text will be blue and a serif font.
</P>
</BODY>
</HTML>

Advanced CSS

72 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

The results of which are shown in figure 4.6.

FIG. 4.6
Classes can be used to
develop multiple styles
for the same element.

Specifying Styles with Element IDs
Element IDs (sometimes called selector IDs) work similarly to classes, but they are limited to
use for only one element. IDs are specified by using the pound sign (#) followed by the ID
name and definition as shown in the following syntax:

#elementid {FONT-FAMILY: serif}

In this declaration, the ID “elementid” will have a font family that is a serif font. To use this
style in your document, you would use the ID attribute as follows:

<P ID=”elementid”>This is a serif font</P>

Unlike the CLASS attribute, however, each element ID must be unique. The following, for
example, is not valid:

<P ID=”elementid”>This is a serif font</P>
<H1 ID=”elementid”>This is not recommended</H1>

The code is invalid because the ID is meant to provide a mechanism for overriding a style for a
particular element. For broader style applications, stick to using classes. Of course, you can
use both in the same document for added flexibility as demonstrated in the following HTML
code:

<HTML>
<HEAD>
<STYLE>
 #abc345 {COLOR: blue}
 P.redtext {COLOR: red}
</STYLE>
</HEAD>

<P ID=abc345>
This text will be blue.

73

4

II
Part

Ch

</P>
<P CLASS=redtext>
This text will be red.
</P>
<!— The following line is illegal and will not work —>
<H3 ID=abc345>It is not recommended to use multiple IDs</H3>
</HTML>

Pseudo Classes and Elements
In several instances HTML already provides for a special style of its own. The fact that links are
highlighted and underlined is an example of a style that already exists before it is even speci-
fied in your style sheet. To accommodate for some of these special circumstances, CSS pro-
vides some special classes called pseudo classes that are used explicitly for modifying some of
these cases. The three pseudo classes that are currently available include the following:

■ :link—This pseudo class represents an element that functions as an HTML link, such as
.

■ :active—When a link is clicked, the link becomes a member of the active pseudo class,
although this is generally a temporary state.

■ :visited—Finally, after a link has be visited, the visited link becomes a member of the
visited pseudo class.

These pseudo classes can be appended to other style selectors, and used to create a style for
specific elements, such as the Anchor tag as demonstrated in the following code:

A:link {COLOR: green}
A:link IMG {BORDER-COLOR: blue}
A:visited {COLOR: gray}

These declarations define all the HREF links in a document as green and any images that serve
as links as having a blue border. In addition, the :visited pseudo class defines any links that
have been visited to have a color of gray. Of course, because these pseudo classes are actually
elements that are already monitored to see if they have been clicked by the browser, it is not
necessary to use any special notation in your HTML code. After a pseudo class is defined, it
applies to all elements of that type.

In addition to the pseudo classes, there are also pseudo elements that function as special selec-
tors. That is, they can be used to apply special style attributes to HTML elements that are pr-
defined by the browser, but are not actually used in standard HTML. The pseudo elements
currently used include the following:

■ :first-letter—The first letter pseudo element represents the first letter in a block of text.

■ :first-line—The first line pseudo element represents the first line in a block of text.

These pseudo elements can be manipulated to produce special text effects, such as a dropcap
or a tagline as demonstrated in the following example:

<HTML>
<HEAD>

Advanced CSS

74 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

<STYLE>
 P.TAGLINE:FIRST-LINE {TEXT-TRANSFORM: UPPERCASE}
 P.DROPCAP:FIRST-LETTER {FONT-SIZE: 200%; FLOAT: LEFT}
</STYLE>
</HEAD>
<BODY>
<P CLASS=TAGLINE>
This paragraph has a tagline, so that all the characters on the first
➥line of the paragraph will appear in capitals.
</P>
<P CLASS=DROPCAP>
This paragraph starts off with a dropcap.
</P>
</BODY>
</HTML>

At press time the current version of Internet Explorer 4 was not properly rendering pseudo
elements. You will want to test your current version of IE to ensure proper support for these

CSS features. ■

The pseudo classes and pseudo elements enable the CSS specification to be altered to accom-
modate different standard elements easily. By combining pseudo classes and pseudo elements
with selectors you can create a variety of interesting text effects.

Nesting Elements
Sometimes in your HTML coding you might want to nest elements, that is, place one HTML
element inside another similar element. One of the best examples of nesting is lists that re-
semble an outline structure as shown in figure 4.7.

FIG. 4.7
Nesting HTML elements.

This could be created by placing a list within a list. Just as you can create a list within a list, you
can also specify a STYLE property within a STYLE property. So, assuming that you have a list,
and you want the first level elements to be all bold words, you would use the following HTML
code to create a list STYLE where all the list items were boldface:

UL LI {FONT-STYLE: BOLD}

This code would result in the first item in the list appearing in boldface.

N O T E

75

4

II
Part

Ch

Now, suppose that following an outline format, you wanted to nest a second list below the bold-
face list, but this one you wanted to appear in italics. You can actually nest the STYLE definition
as well:

UL UL LI { FONT-STYLE: ITALIC }

This would create the output that is shown in figure 4.8.

FIG. 4.8
Nesting style
definitions.

Your capability to nest items on multiple levels is not limited, but practically speaking, it is not
recommended to nest too deeply. Implementing nesting in the HTML file just follows the natu-
ral order that you would nest elements as shown in the following example:

<HTML>
<HEAD>
<TITLE>Nesting Styles</TITLE>
<STYLE>
UL LI { COLOR: RED; FONT-STYLE: ITALIC }
UL UL LI { COLOR: BLUE; FONT-FAMILY: SANS-SERIF; }
</STYLE>
</HEAD>
<BODY>

This list item would appear in red and italicized.

This nested list item would appear in blue, sans-serif font.

This list item would also appear in red and italics.

</BODY>
</HTML>

Advanced CSS

76 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

Figure 4.9 shows the output for the previous HTML code, where the styles defined for list
items are nested styles, and the list elements are also nested.

FIG. 4.9
Nested elements can be
customized with nested
STYLE properties.

As you can see, nesting is not a complicated process, but it does add a great deal of flexibility to
style sheets.

CSS Positioning
The Cascading Style Sheet specification actually does not contain any mechanisms for position-
ing elements, although this is an important mechanism for making web pages dynamic. Al-
though CSS does provide mechanisms for aligning text or changing text appearance, it does
not allow for the explicit positioning of elements in a given location on the page. That is what
CSSP, or Cascading Style Sheets Positioning, is for. Because positioning has become so impor-
tant for web design, both static and dynamic, some extensions to CSS, known as CSS Position-
ing have been proposed by Microsoft and Netscape.

In fact, CSS Positioning forms the basis of many aspects of positioning and animating objects in
Dynamic HTML. Because it is not a part of the CSS1 specification, the CSS Positioning specifi-
cation is not discussed here; however, it is covered explicitly in Chapter 9 where it is appropri-
ate to the Dynamic HTML concepts being discussed.

Where to Learn More About CSS
Obviously, it is impossible to cover all the aspects of Cascading Style Sheets in one chapter.
Although this chapter tried to touch on all the major details of CSS, and provide you with the
widest possible coverage of properties and values, there is still much that can be learned about
CSS, and much you will want to learn to make the most out of Dynamic HTML. This chapter
should serve as a primer, to get you started, and prepare you for some of the examples that will
follow in later chapters. If you are interested in the specifics of different properties, their val-
ues, and their inheritance, you can consult Appendix B.

77

4

II
Part

Ch

To learn even more about the CSS specification, or to read the specification itself, you can
consult the W3C at http://www.w3c.org.

To learn more about the specifics of the CSS in relation to Microsoft, you can check out the
Microsoft web site at http://www.microsoft.com/workshop/author/css/css-f.htm.

Finally, a number of very good texts cover Cascading Style Sheets, including one from Hankon
Lie and Bert Bos of the W3C: Cascading Style Sheets (Addison-Wesley).

From Here…
Now that you have the foundations you need to create style sheets using the Cascading Style
Sheet specification, you are ready to move on to learning about some more of the technologies
that you will need to be familiar with to begin working with Dynamic HTML.

After you are familiar with the basics of the technologies covered in the chapters that follow,
you will be able to use Dynamic HTML more quickly and efficiently. The increase in your
ability to comprehend how Dynamic HTML functions will more than make up for the time out
you have taken to understand the core technologies. Although this might seem like a lot of
groundwork, it is essential for understanding how the underlying technologies tie together to
create Dynamic HMTL. From here, you will delve into the following areas:

■ Chapter 5, “JavaScript Primer,” covers the basics of understanding and using JavaScript,
one of the preferred scripting languages used by Dynamic HTML.

■ Chapter 6, “Dynamic HTML Object Model,” talks about the object model used by
Dynamic HTML that treats all HTML elements on a page as mutually aware objects.

■ Chapter 7, “Event Handling,” covers the importance of event handling in Dynamic
HTML-generated web sites.

From Here…

78 Chapter 4 Cascading Style Sheets Primer

http://www.quecorp.com

79

5

II
Part

Ch

F

5C H A P T E R

Introduction to JavaScript

To add JavaScript to a web page just
put the script inside the <BODY> of
the page with the <SCRIPT> tag.

Statements/Blocks

A line of JavaScript code is known as
a statement. Placing curly brackets
({ and }) around a group of JavaScript
statements creates a block.

Expressions

The two basic expression types in
JavaScript are numerical and logical.

Variables

This chapter covers the process of
creating a variable and changing the
value of the data stored inside it.

Functions

A function enables you to separate
your program into sections, making
it clearer and less prone to error.

Flow Control

Flow control enables your program
to choose different paths and loops
based upon changing conditions.

Objects

Objects enable you to encapsulate
your variables and functions as prop-
erties and methods of the objects.

Arrays

If you have a large amount of similar
data to place in a convenient holder,
an array is the way to go.

JavaScript Primer

or something to be dynamic, there needs to be another
mechanism in place to provide instructions and direction.
In the real world, for instance, the number of places an
automobile could go are pretty much limitless. Without
someone controlling the car (starting it up, pressing the
accelerator, turning the steering wheel, and so on), how-
ever, it will not go anywhere. It is the person sitting in the
driver’s seat who decides the purpose and destination of
the automobile.

Scripting languages are the drivers of Dynamic HTML.
The combination of HTML and Cascading Style Sheets
provides you with unprecedented control over the look
and feel of your web pages; however, by themselves, the
technologies are static and unmoving, much like an auto-
mobile without a driver. Scripting languages enable you to
bring interactivity and motion to your HTML and CSS.

So what is a scripting language? At its essence, a scripting
language is a programming language, such as C, C++,
Java, or FORTRAN. For many people, however, the
thought of programming is somewhat scary. Scripting
languages try to make the prospect of programming a
little less frightening.

Scripting languages, such as JavaScript and Visual Basic
Scripting Edition, have been designed to open up the
world of programming to those people who are not pro-
grammers by profession or training, and who are easily
put off by the complex syntax of a language such as C++
or Java.

80 Chapter 5 JavaScript Primer

http://www.quecorp.com

Think of a scripting language as a programming language stripped down to its essence. It
might not be powerful enough to write a modern word processing program in, but it’s probably
more than powerful enough for any basic programming that you might need for your web
page—with the added bonus of comprehension by normal human beings. ■

Validating the Use of JavaScript with Dynamic HTML
Dynamic HTML is quite open in terms of the scripting languages that it supports. Future web
browser designers could use whatever scripting language is popular at that time and still reap
all the benefits of Dynamic HTML.

Internet Explorer 4.0, however, includes two scripting languages that can be used with
Dynamic HTML: JavaScript and VBScript. The fact that IE 4.0 comes with support for two
scripting languages immediately begs for an answer to the question: Which scripting language
should I use?

Microsoft always refers to the implementation of JavaScript in Internet Explorer as JScript
instead of JavaScript. This can cause some confusion, because Netscape always refers to it

as JavaScript. In any case, to keep confusion to a minimum, it will be referred to as JavaScript
throughout this book. ■

There are many arguments for and against each scripting language. The commercial version of
Visual Basic (the parent language of VBScript), for instance, is one of the best selling program-
ming environments of all time, and vast multitudes of programmers use it every day. Thus, a
huge pool of talent is best served by having a scripting version of Visual Basic available to
them.

JavaScript, on the other hand, is currently the de facto scripting language of the web due to its
inclusion in Netscape Navigator 2.0 and above and Internet Explorer 3.0. Although more pro-
grammers know Visual Basic, more web programmers know JavaScript. Moreover, VBScript is
currently available only in Internet Explorer.

Although we don’t have a strong opinion either way on scripting languages, we had to decide
on one of the two to focus on to keep things from getting too confusing. We chose to

concentrate on JavaScript, mainly due to its massive acceptance and familiarity on the web.

The use of VBScript with Dynamic HTML in Internet Explorer 4.0 is covered in Appendix C, “Using
VBScript Instead of JavaScript.” ■

Introduction to JavaScript
If you’ve ever programmed in any other languages, JavaScript should be fairly straightforward
for you to learn. If not, don’t worry; it’s pretty easy. Listing 5.1 is a simple program that gives
you an idea of how JavaScript looks:

N O T E

N O T E

81

5

II
Part

Ch

Listing 5.1 A Simple Hello World Program in JavaScript

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Hello World in JavaScript
05. </TITLE>
06. </HEAD>
07. <BODY>
08.
09. <SCRIPT language=”JavaScript”>
10.
11. document.write(“Hello, world”);
12.
13. </SCRIPT>
14.
15. </BODY>
16. </HTML>

The first thing you should do is take a look at the HTML in line 9 that surrounds the JavaScript
program. If you’ve used basic HTML before, everything looks pretty standard until you get to
the line that says:

<SCRIPT language=”JavaScript”>

The <SCRIPT> tag is just a standard HTML tag. The <SCRIPT> tag instructs the program to
take everything contained within (that is between this and </SCRIPT>) and treat it as a script
to be executed. The scripting language to be used is specified by the language attribute, which
in this case is set to JavaScript (if Visual Basic Scripting Edition was used instead, the language
attribute would be set to VBScript).

Line 11 is the only line that actually contains JavaScript code:

document.write(“Hello, world”);

This line tells the browser to write the string “Hello, world” to the browser document window.
As you can see in figure 5.1, “Hello, world” shows up just as if you had included it as part of the
HTML code.

In fact, you can use JavaScript to output any HTML you like, not just plain text. Try replacing
the JavaScript from the previous example with the following:

 <SCRIPT language=”JavaScript”>

 document.write(“<H1>Hello, world</H1>”);

 </SCRIPT>

Make sure that you reload the HTML page to ensure that the script is updated. Note that now
“Hello, world” is displayed as an HTML heading rather than as regular text (see figure 5.2).

Introduction to JavaScript

82 Chapter 5 JavaScript Primer

http://www.quecorp.com

In the sections that follow, the different syntax elements that make up a JavaScript program will
be covered. These elements include the following:

■ Statements—Statements are the lines of code from which JavaScript programs are built.

■ Blocks—Blocks enable you to group statements.

■ Comments—Comments enable you to annotate your code with remarks.

■ Data—Data is the actual information upon which your programs work.

■ Expressions—Expressions enable you to perform operations on data.

■ Variables—Variables give you a place to store your data.

■ Functions—Functions are used to group your code into sections with a name.

■ Flow Control—Flow control enables your program to take different courses of action at
runtime.

FIG. 5.1
Output from the “Hello
World” script.

FIG. 5.2
“Hello, world” to HTML.

83

5

II
Part

Ch

■ Objects—Objects enable you to group together your data and functions.

■ Arrays—Arrays enable you to hold a great deal of data and access individual elements
easily.

Statements
JavaScript programs are made out of statements. What is a statement? Technically statements
are a group of one or more items and symbols on a line. Put simply, however, a statement is a
line of code. You’ve already written a statement:

document.write(“Hello, world”);

Note that this line ends with a semicolon. In JavaScript, a semicolon is a way of saying that the
statement has ended and the script can be executed. Semicolons are normally used at the end
of each line, but you can place multiple statements on a line if each is separated by a semicolon.
If you don’t like the idea of putting semicolons at the end of all your statements, you’ll find that
you can usually leave them off without generating an error. It’s best, however, to get in the
habit of using semicolons because it can make tracking down errors easier and is generally
considered to be better form.

Blocks
It is quite common in programming to want to group many statements together so that they
can be treated as one entity—this is often done with functions and in conditionals, which are
discussed later in this chapter.

This grouping of statements together into one entity is called a block. A block is created by
surrounding all the statements that it will contain with brackets ({ and }). The following code
snippet is a block:

{
 document.write(“This is the first statement”);
 document.write(“This is a second statement”);
 document.write(“All these statements are part of a block”);
}

Note that the statements inside the block are indented compared to the brackets that surround
it. Although not required, doing this is a common coding convention that makes your code
more readable and easier to modify.

Comments
Even though JavaScript is fairly readable for a programming language, it certainly isn’t English
and therefore can become quite confusing. Moreover, it’s easy to use complicated logic in a
program that might not be readily apparent the first time someone else reads the code to your
program.

Comments

84 Chapter 5 JavaScript Primer

http://www.quecorp.com

To remedy this situation, JavaScript enables you to comment your code. Comments are com-
pletely ignored by the JavaScript interpreter, so you can type whatever descriptive text you
want. You can write single-line or multiline comments.

The process of commenting code is something that most programmers know they should do,
but all too often they forget. It’s a good idea to keep in mind, however, that it may not be some-
one else who has to figure out your code in the future. It may be you in a year or two, having
completely forgotten what it was you were trying to do.

In general, it doesn’t make sense to try to comment every line in your program. A good general
benchmark is that if you had to spend more than a few minutes figuring out how to write a
section of your code, write a comment about it, because that means you’ll have to spend just as
much time figuring out the code when you revisit it later.

Single-Line Comments
If you just need to add a small amount of description to the code you are writing, a single-line
comment is probably the best option. Placing “//” before your text makes it a single-line com-
ment:

// The following line writes “Hello World” to the browser window
document.write(“Hello World”);

You can also join a line that contains a JavaScript statement and a single-line comment into one
line:

document.write(“Hello World”); // Write “Hello World" to the browser window

If you do this, make absolutely sure that you put the comment after the JavaScript code, other-
wise that code will not be executed. After you’re used to programming in JavaScript this fact
can be used to your advantage, enabling you to selectively comment out a line or two of your
code if you think it is unneeded or is causing problems.

Multiline Comments
Sometimes one line of commenting isn’t enough room for the description you want to provide.
In this case, you can use a multiline comment. Multiline comments are specified by surround-
ing the commented text with “/*” at the beginning and “*/” at the end:

/*
 This comment is of the multiline type. It can contain as
 many lines of comments as you want. Repeat to yourself,
 Commenting is a good thing, Commenting is a good thing.”
*/

You need to be careful when using multiline comments to make sure that you do not put one
inside of another, because this causes an error. The following, for example, is not valid
multiline commenting in JavaScript:

85

5

II
Part

Ch

/*
 This is a standard multiline comment. So far, so good
 /* This is multiline comment, which by itself
 would be fine */
*/

The reason that enclosing one multiline comment within another generates an error is that the
end of a multiline comment is signified by “*/” and the JavaScript interpreter treats anything
between the “/*” and the “*/” as comments, therefore the second “/*” is ignored and not
recognized as the beginning of another comment.

Data
One of the basic tenets of programs is that they have to work on data. What is data? Data is any
type of information with which you are working. Data can be words, such as “Hello There” or
numbers, such as 42 or 381.33. In any case, different programming languages enable you to
work on different kinds of data.

JavaScript has six fundamental data types: string, number, Boolean, function, object, and Null
(see table 5.1). The sections following this table discuss the string, number, Boolean, and Null
types. Functions and objects are discussed later in this chapter.

Table 5.1 JavaScript Fundamental Data Types

Data Type Example

String “Hello”, “A String”, ‘He said, “hello”’

Number 12, 372.33, 0xff

Boolean true, false

Object document, window

Function computePrimes(), addName()

Null null

Strings
A string is any grouping of characters together that are surrounded by either double quotation
marks(“) or single quotation marks(‘). Strings are used anytime you want to use text in a pro-
gram. Here are a few examples of strings:

“Hello World”

“Microsoft Dynamic HTML”

Usually double quotation marks are used to denote strings. If you want to include double
quotes in the string itself, use single quotation marks instead:

‘A string that contains “double-quotes”’

Data

86 Chapter 5 JavaScript Primer

http://www.quecorp.com

Numbers
JavaScript is quite flexible in the ways it enables you to represent numbers. Many program-
ming languages make you decide ahead of time what type of number you will be using. You, for
instance, might need to specify whether a number is an integer or a floating point number.

JavaScript, however, treats all numbers the same: they’re just numbers, whether they’re whole
integers or not. Here are a few examples of numbers in JavaScript:

72 // The decimal integer 72
32.4 // The floating point number 32.4
.327 // The floating point number .327

Booleans
A Boolean is the simplest data type available. A Boolean value has only two possible values—
true and false. They are often used to represent whether something has been done.

An example of when a Boolean might be used is when you want to keep track of whether the
users have clicked an image previously. The first time they click the image, you might want to
do something special such as running an animation or playing a certain sound. The second
time they click, however, you might want to do nothing. The most straightforward way to keep
track of this information would be through a Boolean that is set when the image is clicked.

Null
The final JavaScript data type is quite special. The Null data type only has one possible value:
null. When a variable is set to null it means that it has no value. Variables are often set to null
when a value was to have been returned to a function but instead no value was generated.

Expressions
Data by itself can be pretty useless. Normally you want to do something with the data. Maybe
you want to divide two numbers by each other, add two numbers together, or perhaps you want
to check to see whether two sets of numbers added together are equal to one another. These
are all uses of expressions.

This may sound a bit confusing at first, so consider a practical example. Say you were given a
temperature in degrees Fahrenheit and wanted to convert it to Celsius. You would use the
following process to do this:

1. Start with the degrees in Fahrenheit (F).

2. Subtract 32.

3. Multiply the number by 5.

4. Divide the number by 9.

87

5

II
Part

Ch

This process can be turned into a mathematical representation instead of the longhand version
just shown. This mathematical representation would be

 (F–32)*5/9

This representation is known as an expression.

Numeric Expressions
A numeric expression is the rudimentary sort of mathematical operation that you’re accustomed
to, except written out in its full form. The numeric expression for two plus three, for instance, is:

2 + 3

The common operations that can be used on numbers in JavaScript are listed in table 5.2.

Table 5.2 Common Numerical Operators

Operator Example Definition

+ 3 + 3 Addition

– 12 – 4 Subtraction

* 22 * 3 Multiplication

/ 18 / 4 Division

% 18 % 4 Modulo: The remainder after division. The result here
would be 2, because 4 goes into 18 4 times, with a
remainder of 2.

– –(12 * 3) Unary Negation: The negative of the expression that
follows. The result, for example, would be –36. The
negative of a negative is a positive.

If you have an expression that contains more than one set of operations, you can group them
together with parentheses (‘(’ and ‘)’). This dictates the order in which the expressions are
evaluated. Figuring out the order to carry out the operations in the following expression, for
instance, could take a while:

36 * 12 % 15 – 32 * 12 / 3

This is a valid expression, and if you looked in a JavaScript reference manual for operator pre-
cedence you could probably figure it out; however, it would be much easier to just use the
following:

((36 * 12) % 15) – (32 * 12) /3))

Logical Expressions
A logical (or Boolean) expression is an expression that when evaluated returns a result of either
true or false. Boolean expressions can be generated in several ways, but the most common way
is to use logical or comparison operators (see table 5.3).

Expressions

88 Chapter 5 JavaScript Primer

http://www.quecorp.com

Table 5.3 Logical and Comparison Operators

Operator Name Usage

&& And (exp1 && exp2) returns true if both exp1 and exp2
are true, otherwise returns false.

|| Or (exp1 || exp2) returns true only if either exp1 or exp2
are true.

! Not (!exp) returns false only if exp is true, or true if exp
is false.

== Equal (exp1 == exp2) returns true only if exp1 is equal to
exp2.

!= Not equal (exp1 != exp2) returns true only if exp1 is not equal
to exp2.

> Greater than (exp1 > exp2) returns true only if exp1 is greater
than exp2.

>= Greater than or equal (exp1 >= exp2) returns true only if exp1 is greater
than or equal to exp2.

< Less than (exp1 < exp2) returns true only if exp1 is less than
exp2.

<= Less than or equal (exp1 <= exp2) returns true only if exp1 is less than
or equal to exp2.

A few examples of Boolean expressions follow:

true && false

This expression evaluates to false because one of the sides is not true and the AND operator
(&&) requires both sides to be true for the expression to be true.

26 < 50

The preceding expression, however, evaluates to true because 26 is indeed less than 50.

(26 < 50) || (45 < 10)

By using the OR operator(||),this expression is a little less restrictive than the AND operator
(&&) in that it needs only one side to be true for the expression to evaluate to true.

!(10 != 4)

Finally, the preceding expression evaluates to false. This type of expression requires a little bit
of thought: 10 doesn’t equal 4, which is true, but the NOT operator (!) gives the opposite,
which is false.

89

5

II
Part

Ch

In a Boolean expression, any numeric expression that evaluates to 0 is regarded as false, other-
wise it is regarded as true. Although this sounds pretty confusing, the following examples
might clear this up:

(2 + 2)

Because 2 plus 2 equals 4, which isn’t 0, this expression—if used where a Boolean expression
is expected—returns true, while

(2 – 2)

returns false because it evaluates to 0, which is regarded as false.

Numeric expressions can also be combined with logical operators, as in the following:

(2 – 2) || (2 + 2)

The preceding expression evaluates to true, because the right side of the expression evaluates
to true, and the OR operator (||) requires only one side of the expression to be true for the
expression to evaluate to true.

Variables
Having data and expressions is fine, but not of much use if you can’t store them somewhere.
Variables enable you to define places to store this data. Think of a variable as a storage con-
tainer: it always contains something, but the thing it contains can change over time.

Over the course of this section, two aspects of working with variables will be presented. First,
the methods for creating and naming variables will be discussed. Next, methods for changing
the value that is held in variables will be shown.

Defining and Naming Variables
It’s extremely simple to define a variable in JavaScript: think of a name for the variable that you
want to define and then put var before it. Here’s an example:

var position = 10;

This code creates a variable named position and gives it an initial value of 10. You can also
create a variable without an initial value, but if you do so, be careful not to access the variable
before it has had a value placed in it.

You can name a variable just about any name you can imagine, as long as you follow these
rules:

1. The variable name cannot be a reserved word (see table 5.4).

2. The first character in the name must be an alphabetic letter or an underscore(_).

3. Characters subsequent to the first character in the variable name can be alphabetic
letters, numbers, or underscores.

Variables

90 Chapter 5 JavaScript Primer

http://www.quecorp.com

Table 5.4 JavaScript Reserved Words

abstract boolean break byte case

catch char class const continue

default delete do double else

extends false final finally float

for function goto if implements

import in instanceof int interface

long native new null package

private protected public return short

static super switch synchronized this

throw throws transient true try

typeof var void while with

Here are a few examples of valid variable names:

var x_location;
var _loc;
var choice32;
var answer_42;

Here are a few examples of variable names that are invalid:

var 99balloons; // Violates rule 2
var eggs$bacon; // Violates rule 3
var $fred // Violates rule 2
var package; // Violates rule 1

Another thing to be aware of is that JavaScript is case-sensitive. This means that two variables
can appear to be the same, but are not recognized as such by the browser. The following, for
example, are two entirely different variables:

var testResult;
var TestResult;

This can be a source of major headaches during debugging sessions, so just repeat over and
over in your head: “JavaScript is case-sensitive. JavaScript is case-sensitive.”

Where you define your variable dictates where it can be used later. A variable defined in a
function can only be used inside that function definition, for example. This type of variable is
known as a “local” variable because it is specific to that function.

On the other hand, if you declare a variable outside of your functions, it can then be used by all
the functions you define. This type of variable is known as a “global” variable because it can be
used throughout your entire program.

91

5

II
Part

Ch

Changing the Value of a Variable
To give a variable a new value after it is created, the assignment operator (=) is used. The
variable name is listed on the left-hand side of the statement and an expression containing
the value it is to be assigned is listed on the right-hand of the statement. Consider a simple
example, assuming that the variable currPosition has already been created:

currPosition = 10;

This statement changes the value of currPosition to 10. Variables can hold any type of valid
data—remember the data types listed earlier in the chapter?—so you could also change
currPosition to a Boolean or string value, as in the following:

currPosition = true;
currPosition = “foobar”;

All the expressions so far are made up of constant data, but a variable could also be used in the
expression. The interpreter just substitutes the value of the variable into the expression. There-
fore, assuming currPosition has the value 10, the statement

currPosition = currPosition + 10;

sets the value of currPosition to 20, adding 10 to the current value of the variable.

It turns out that this type of variable assignment is executed frequently. So often, in fact, that
there are special assignment operators for all the common numeric operations (+, –, *, /, and
%). These are constructed by adding an equal sign immediately after the operator without
adding a space between the two. Therefore,

currPosition += 10;

is completely equivalent to the earlier example, setting currPosition to its current value plus 10.

It has been a while since there was an example to try in Internet Explorer. Listing 5.2 ties
together some of the concepts from the last few sections in an example program. Figure 5.3
that follows shows the output from this program.

Listing 5.2 Changing Variable Contents in JavaScript

01. <HTML>
02. <HEAD>
03. <TITLE>
04. JavaScript Example 2
05. </TITLE>
06. </HEAD>
07. <BODY>
08.
09. <SCRIPT language=”JavaScript”>
10.
11. var myValue = 18;
12. document.write(“Initial Value is: “);
13. document.write(myValue);

continues

Variables

92 Chapter 5 JavaScript Primer

http://www.quecorp.com

14. myValue += 2;
15. document.write(“<p>Then after adding 2, value is: “);
16. document.write(myValue);
17. document.write(“<p>But, is that greater than 19: “);
18. document.write(myValue > 19);
19.
20. </SCRIPT>
21.
22. </BODY>
23. </HTML>

Listing 5.2 Continued

FIG. 5.3
Output of a script that
changes variable
contents.

Most of this code should be pretty straightforward to you by now. The most important thing at
this point is to focus on three significant lines of code in this example. The first significant line
occurs on line 11 between the <SCRIPT> paired tag:

var myValue = 18;

This sets up a variable named myValue and gives it an initial value of 18. Because this value is
stored in a variable, it’s kept in memory while the next statements are executed:

myValue += 2;

Remember that this is the short version of

myValue = myValue + 2;

as described in the previous section about assignment operators. This statement sets myValue
equal to the current value, which is 18, plus 2, which is 20.

Line 18 prints to the documents the result of checking whether myValue is greater than 19:

document.write(myValue > 19);

93

5

II
Part

Ch

No statements between document.write(myValue > 19); and the previous statement change the
value of myValue. As a result, document.write(myValue > 19); prints the result of a logical ex-
pression that asks whether myValue (currently 20) is greater than 19, which it is. Therefore,
“true” is printed.

Functions
So now you know how to write programs and could conceivably even write large programs;
however, they would become large and unruly quite quickly. It would be nice if you could break
up those larger programs into smaller sections that perform small and well-defined actions.

Programs are broken up this way with functions. A function is a block of code—remember
blocks from earlier in the chapter—with a defined name that may or may not take one or more
arguments. Functions are called by name, which takes the form

foo(bar);

The parentheses enclose any arguments that the function may take. In this instance the func-
tion named foo takes one argument named bar.

Functions can also return values, although they do not always do so. You don’t necessarily have
to do anything with these returned values, but they usually return a value for a good reason, so
it’s best not to ignore them. Functions that return values can be placed in an expression in the
same manner that data or variables can be.

Built-In Functions
Most of the functions you will be calling as you program in Dynamic HTML are related to the
Dynamic HTML Object Model, which will be discussed in the next chapter. However, the
JavaScript language itself includes a few useful built-in functions, listed in table 5.5, of which
you should be aware.

Table 5.5 Useful Built-In JavaScript Functions

Function Description

escape(charstring) Returns the conversion of charstring into a form that displays in
the browser without HTML markup.

eval(codestring) Evaluates codestring as JavaScript code, returning anything that
JavaScript returns.

isNan(numvalue) Returns true if numvalue is not a number, otherwise returns
false—used with parseFloat and parseInt.

parseFloat(numstring) Returns numstring converted to a floating point number. If it
cannot be converted, returns the reserved value NaN.

continues

Functions

94 Chapter 5 JavaScript Primer

http://www.quecorp.com

parseInt(numstring) Returns numstring converted to an integer. If it cannot be
converted, returns the reserved value NaN.

unescape(charstring) Returns the conversion of charstring back into a form that
displays in the browser with HTML markup (the opposite of
escape).

Start by looking at one of the functions that’s built into JavaScript. This function is called eval
and takes one argument, called codestring :

eval(codestring)

The eval(codestring) function takes a string as an argument and evaluates it as a JavaScript
expression. It is actually run through the JavaScript interpreter and whatever output it gener-
ates is returned as the return value of the function. Listing 5.3 shows the eval() function in
action:

Listing 5.3 Evaluating String Arguments as JavaScript Expressions

01. <HTML>
02. <HEAD>
03. <TITLE>
04. JavaScript Example 3
05. </TITLE>
06. </HEAD>
07. <BODY>
08.
09. <SCRIPT language=”JavaScript”>
10.
11. var convertMe = “2+2”;
12. convertMe = eval(convertMe);document.write(convertMe);
13.
14. </SCRIPT>
15.
16. </BODY>
17. </HTML>

Figure 5.4 shows the output from this example. Note that the string “2+2” isn’t printed, but
instead “4” is printed, which is what “2+2” would evalute to in a JavaScript expression.

The important line to pay attention to in this example is

convertMe = eval(convertMe);

As discussed earlier, the eval() function enables you to evaluate arbitrary strings as JavaScript
expressions and find out to what they evaluate. This means that you can use the eval() function
as sort of a calculator or logical statement analyzer that is always available to your programs.

Table 5.5 Continued

Function Description

95

5

II
Part

Ch

User-Defined Functions
Say you use eval() often before printing to the web page. In fact, you use it all the time, and
frankly it has gotten to be a pain making sure that you always remember to use escape() first.

Luckily, it turns out that you can define your own functions. A function is defined by combining
a function statement and a block of code to associate with that function. The function statement
consists of the word function, followed by parentheses containing the name of the function.

Call the function printEval() and have it take one argument called theText. You don’t need to
worry about making it do anything yet, so just follow it with a blank block:

function printEval(theText)
{
}

This is a valid function definition, although it doesn’t do much. Now, what do you want to do
inside the function? You want to print out the string theText after sending it through the eval()
function. The following code shows this addition to the function:

function printEval(theText)
{
 theText = eval(theText);
 document.write(theText);
}

The following code in listing 5.4 uses the user-defined printEval() function. The output from
this code should be the same as from the preceding example:

Listing 5.4 Incorporating User-Defined Functions in JavaScript

01. <HTML>
02. <HEAD>
03. <TITLE>
04. JavaScript Example 4
05. </TITLE>

FIG. 5.4
Using the eval()
function.

continues

Functions

96 Chapter 5 JavaScript Primer

http://www.quecorp.com

06. </HEAD>
07. <BODY>
08.
09. <SCRIPT language=”JavaScript”>
10.
11. function printEval(theText)
12. {
13. theText = eval(theText);
14. document.write(theText);
15. }
16. var convertMe = “2+2”
17. printEval(convertMe);
18.
19. </SCRIPT>
20.
21. </BODY>
22. </HTML>

If you’re paying close attention, you may be wondering what happens to the variable convertMe
after you pass it to the printEval() function on line 17. Use the document.write() function to
write out the value of convertMe after making the call to printEval() in the main body of the
script. After all, the best way to learn is by doing!

Returning Values from Functions
The printEval() function from the previous section performs an action but doesn’t return any
data. Data can be returned from a function by using the keyword return, followed by the data to
be returned. The following simple function takes a number and returns the square of that
number to the calling expression:

function square(inNum)
{
 return (inNum * inNum);
}

You are not limited to returning numbers via return. In fact, any of the data types listed earlier
in the chapter can be used as a return value.

Now, if you want to use this function, you could include a call in the main body of the script or
another function that calls the square function, for example:

var squared;
squared = square(4);

After executing this code, squared would have the value 16. Why is this? The function square()
takes one argument: the value to be squared. Then it returns that value squared as the value of
the function.

Listing 5.4 Continued

97

5

II
Part

Ch

Flow Control
The discussion of JavaScript to this point in the chapter presents the scripting language as a
linear mechanism—it starts at the first statement, goes to the next, and so on.

Programming is, in many ways, about making decisions. What you do in one circumstance may
well not be what you do in another. Also, you may want to do something over and over and
over, but up to this point, the only way to do that would be to place the statements you want to
repeat in a function, and then call that function over and over—or worse, cut and paste the
statements you want to call repeatedly.

The concept of diverting what the program does at a given point, based upon differing condi-
tions, is called flow control. JavaScript gives you quite a bit of control over the program flow
through conditional statements, such as “if…else” and repetition statements, such as “for” and
“while” loops.

Suppose, for instance, that you’re driving along and come to a fork in the road. You must decide
at that point whether to take the fork to the left or the fork to the right. Which one do you take?
Flow control is the mechanism that JavaScript uses to make decisions like these.

if and if…else
The most basic concept in flow control is branching based upon a conditional expression. This
might sound complicated, but all it means is to use a logical expression—explained earlier in
the chapter—to decide whether to follow one path or another.

An if statement is constructed by using the keyword if followed by a logical expression inside
parentheses, and then the statement (or block) to execute if that logical expression is true. The
following code shows a few concrete examples of if statements in action:

var x = 10;
var y = 25;
if (x < y)
 document.write(“x less than y”);
if (x != y)
 document.write(“x doesn’t equal y”);
if (x >= y)
 document.write(“x greater than or equal to y”);
if (x == y)
 document.write(“x equals y”);

In the first case “x less than y” is printed to the page, because 10 is less than 25, which is true,
so the statement included in the if statement is executed. By the same logic, the second if
statement causes “x doesn’t equal y” to be printed to the screen. For the final two if statements,
nothing is printed, because the logical expressions that follow are false, so the next statement
is not executed.

Flow Control

98 Chapter 5 JavaScript Primer

http://www.quecorp.com

Notice in the description of how to construct an if statement that a block of code can follow the
logical expression as well. Applying the same x and y variables from the previous example (10
and 25, respectively), take a look at the following example:

if ((x == y) || (x < y)) {
 document.write(“x less than y “);
 document.write(“or x equals y”);
}

In this case “x less than y or x equals y” is printed because the logical expression is true—work
it out in your head if it isn’t immediately obvious, because it’s this sort of thinking that helps
you acclimate to understanding conditionals—and the block that follows the if statement con-
tains two statements, which are then executed in order.

You can also construct an if…else conditional statement by adding the else keyword to the end
of an if statement. In this case, the program executes the statement (or block) following the
logical expression if the expression is true or the statement (or block) following the else key-
word if the expression is false. Applying the same x and y variables from the previous examples
(10 and 25, respectively), take a look at the following example:

if (x == y)
 document.write(“x equals y”);
else
 document.write(“x doesn’t equal y”);

In this case “x doesn’t equal y” is printed. Why? The logical expression is false because 10
doesn’t equal 25, so the statement following the expression isn’t executed; however, because
the expression was false, the statement following the else keyword is executed, which prints “x
doesn’t equal y.”

for Loops
The for loop is the most basic of looping statements. It enables you to execute a statement (or
block) a set number of times, based upon a counter and expression to compare that counter
against.

A for loop is constructed by starting with the keyword for followed by a specification of a
counter variable. This counter variable is used by the for loop to keep track of where you are in
the loop.

Next comes the test case, which determines whether the loop will be executed.

Finally, there is the statement (or block) to execute every time the loop is run.

That sounds a bit complicated, so try constructing a simple for loop. Suppose you want to print
out every number from 1 to 10. The for loop you might use to do so would be as follows:

for (var count = 1; count <= 10; count++)
{
 document.write(count);
 document.write(“
”); // Print a break to separate lines
}

99

5

II
Part

Ch

For a better view of what’s occuring in the previous code, the following list breaks this transac-
tion down into its component parts:

■ Counter variable: The counter variable is set to var count = 1, which sets up a new
variable to use for this loop and sets it to 1. This part is only executed once.

■ Test case: Before the loop is executed each time, the logical expression count <= 10 is
tested. Therefore, the loop will be executed until the count is no longer less than or equal
to 10. After the test case fails, the for loop exits and the next statement following the for
loop construction is executed.

■ Action taken after execution: At the end of each execution of the loop, the statement
count++ is called. In this loop, 1 is added to the count each time (count++ is also the same
as count = count + 1 or count += 1).

■ Statement/Block to execute: Each time the test case is satisfied, this statement (or
block) is executed. Here, this is the block that is enclosed within the curly braces ({}).

Although this for loop is simple, you could certainly get more complicated in the logic of the
loop. You could, for example, have the loop start at 64 and then divide the counter variable by 2
until the counter variable equals 1:

for (var count=64; count >= 1; count = count / 2)

CAUTION

In some instances making the logic of your loops or conditionals more tricky makes sense. Always use
caution before doing this sort of thing, because it can make debugging more painful later. In general, when
considering making things more complicated, ask yourself if you could do this in a more simple manner.

while Loops
A while loop is much like a for loop except it has only a test case. Therefore, you must make
sure that conditions change over the execution of the while loop to ensure that the test case
eventually fails (returns false).

A while loop is constructed by using the while keyword, followed by a test case—much like
the one in the for loop—and finally the statement (or block) to execute if the test case is true.
Before each time the statement(s) of the while loop is executed, the test case is checked.

Consider a metaphor that exists in the real world. Your car will only drive when it has gas in it.
In a way, you could think of your car’s engine as a while loop that evaluates to “while there is
gas, run the engine.”

You will want to initialize the counter variable outside the while loop, assuming you are using a
counter variable and not some other means of testing for completion, and somewhere inside
the while loop you will want to make sure that the counter variable is updated.

Flow Control

100 Chapter 5 JavaScript Primer

http://www.quecorp.com

The following code constructs a while loop that behaves the same way as the first for loop
example:

var count = 1;
while (count <= 10)
{
 document.write(count);
 document.write(“
”); // Print a break to separate lines
 count++;
}

First, before getting to the while loop itself, the counter variable count is created and initialized
to 1. This is done because no section in the while loop is set aside for creating and initializing
the counter variable. Next, the test case is checked inside the while loop. Then, if the test case
is true, the body of the loop—the statement or block that follows—is executed. Note that 1 is
added to count at the end of the body, making sure that the condition in the test case will
change after each run through the loop.

CAUTION

Use while loops with caution. It’s easy to forget to increment the counter in a while loop, which can result in
a loop that just repeats forever—often referred to as an infinite loop. Always make sure that whatever is being
checked in the test case is updated each time the loop is executed, or at least is guaranteed to update at
some point.

break and continue Statements
For the most part, using loops as they were designed is more than enough power over the
control of execution in your program. On occasion, however, you may find yourself writing
the body of the loop and wishing there was some way you could skip to the next iteration
of the loop or break out of the loop entirely. This possibility is provided by the continue and
break statements.

The first example examines the break statement. The following example is a repetition from
the section on the for loop, but updates the for loop so that when the counter variable gets
to 5, the for loop exits completely:

for (var count = 1; count <= 10; count++)
{
 if (count == 5)
 break;
 document.write(count);
 document.write(“
”); // Print a break to separate lines
}

In this example, each time the loop is executed it checks to see whether count is equal to 5. If it
isn’t, the loop continues as normal. If, however, it is equal to 5, the for loop is exited. It is impor-
tant to note that not just the iteration through the loop is exited, but the entire for loop is bro-
ken out of and it will not loop again. Therefore, only the numbers 1 through 4 are printed.

101

5

II
Part

Ch

The following code examines the continue statement. The continue statement doesn’t break
you out of the loop entirely, it just skips the rest of the body of the loop for that iteration as
demonstrated in the following:

for (var count = 1; count <= 10; count++)
{
 if (count == 5)
 continue;
 document.write(count);
 document.write(“
”); // Print a break to separate lines
}

This is similar to the previous example demonstrating the break statement. The numbers 1
through 4 print out first. The continue statement executes on the fifth time through the loop
because count is equal to 5, which causes the number 5 not to be printed. Unlike the break
statement, however, the for loop continues, and the numbers 6 through 10 print.

CAUTION

Using the continue statement inside a for loop is usually fairly safe; however, be sure to use continue
statements inside a while loop with a great deal of caution. It is quite easy to end up with an infinite loop if
you execute a continue statement before the variable that is tested is updated.

Objects
Object-oriented programming (OOP) has been a hot topic in computer programming for quite
a while now, and every new self-respecting computer language includes some kind of support
for objects. JavaScript is no exception.

If you’re accustomed to the object-oriented programming models of C++ or Java, you’re in for a
bit of surprise. JavaScript doesn’t support advanced OOP concepts such as inheritance or poly-
morphism. Instead, it tries to keep things as simple as possible by stripping things down to the
bare minimum.

One of the core tenets of OOP is called encapsulation. Encapsulation sounds like a complicated
term, but it’s actually quite a simple concept. If you’re accustomed to writing big programs, you
know that it’s easy to end up with an overwhelming number of functions and variables that can
be hard to manage.

Encapsulation is simply the process of wrapping up those functions and variables into different
packages, called objects. The variables become known as properties of the object, and the func-
tions are then known as methods. Don’t let the terms properties and methods get you confused;
just think of them as variables and functions wrapped up inside an object.

Properties and methods are the core elements from which objects are built. Start by taking a
look at methods in more detail.

Objects

102 Chapter 5 JavaScript Primer

http://www.quecorp.com

Methods
As mentioned previously, a method is just a function that is contained inside of an object. This is
a pretty abstract concept, so let’s start by considering a real world example.

Say that you want to use an object that represents an automobile. Someone driving an automo-
bile can perform several basic functions: push the gas pedal, push the brake, steer the wheel
right, and steer the wheel left. This functionality would be made available to the user of the
object via its methods:

■ pushGas()

■ pushBrake()

■ steerRight()

■ steerLeft()

Because these are methods and not functions, they could not be called by themselves. Instead,
to call a method you must prefix it with the name of the object you want to call the method
upon, separated by a period.

So, if you had one of these automobile objects that was named myCar, you would tell the auto-
mobile to steer right by using the following statement:

myCar.steerRight();

This statement calls the steerRight() method of the myCar object, causing the car to turn to the
right. At this point you may be asking yourself where the data that represents the automobile is
stored. The answer to that question is in the properties of the object.

Properties
When methods are called, those methods usually act upon some sort of data contained in the
object. That data is called properties. A property is simply a variable that is contained inside of
an object.

Consider the automobile example again. The methods that have been presented together
model two aspects of the automobile’s state at any given time—speed and direction.

This data would be contained inside the object via its properties. Assume that the object con-
tains the following two properties to model this state: speed and direction.

Now, you could modify the speed of the automobile represented by the object myCar directly
by modifying the speed property. Properties are modified like any other variable, except that,
much like methods, the property name must be prefixed by the name of the object you want to
modify the property of, separated by a period. Therefore, if you want to set the speed of the
myCar object to 25, you would use the following statement:

myCar.speed = 25;

103

5

II
Part

Ch

Now that you understand how you might use an imaginary object, take a look at an actual
object built into the JavaScript language.

 Built-In Objects
JavaScript includes a few objects itself—Dynamic HTML adds a great deal more, but that is
covered in the next chapter. One of the more common of these objects is the Math object. The
Math object includes quite a few methods for doing higher-level mathematical calculations and
also includes a few properties that contain common mathematical constants.

One of the common mathematical constants that the Math object contains is PI. Let’s say you
wanted to write a small function that determined the area of a circle:

function area(radius) {
 return (radius * radius * Math.PI); // Area=PI*Radius Squared
}

This function simply takes one argument, “radius,” and then returns the value of PI times it
squared, which is the formula for the area of a circle.

The Math object also includes methods for mathematical operations. It includes the sqrt()
method, for instance, which determines the square root of the number passed to it. The follow-
ing example uses this method to print out the square root of 10:

var myNumber = Math.sqrt(10);
document.write(myNumber);

To learn more about the other built-in objects in JavaScript, see the formal JavaScript
documentation—World Wide Web addresses are provided for these documents in the
“JavaScript Resources” section of this chapter.

User-Defined Objects
Defining your own objects is a bit tricky. The first step is to write a function that contains all the
properties and, if desired, methods of the object. You then set the properties inside the object
with the this statement. Assume that you want to define an employee object that contains the
employee’s name, age, and salary. You would define this object as follows:

function employee(name, age, salary)
{
 this.name = name;
 this.age = age;
 this.salary = salary;
}

It’s important to note that at this point you haven’t created the object. Instead, you’ve created a
function that makes the objects. Think of it as an object “cookie-cutter.” This “cookie-cutter” is
referred to as the object’s constructor. Using this “cookie-cutter” to create an object is known
as instantiation.

Objects

104 Chapter 5 JavaScript Primer

http://www.quecorp.com

To actually make objects, you need to call the new statement with a call to this constructor
following it. So, if you want to create an employee object with the name “Fred Jones”, age 28,
salary $35,000.00, and assign it to the variable myEmployee, you would use the following code:

myEmployee = new employee(“Fred Jones”, 28, 35000)

Then you could reference the object properties as follows:

empName = myEmployee.name;
empAge = myEmployee.age;
empSalary = myEmployee.salary;

If you’re using one object extensively in a section of your program, there is a shorthand way to
access this object that enables you to avoid typing the name of the object before the properties
when referencing them.

To do this, you use the with statement, followed by the name of the object to be used by default
when referencing properties, and a block of statements that use this object. The following, for
instance, executes the same actions as the previous example:

with (myEmployee)
{
 empName = name;
 empAge = age;
 empSalary = salary;
}

Now that the myEmployee object is being used in the with statement, the references to the
empName, empAge, and empSalary properties are all automatically assumed by JavaScript to be
properties of the myEmployee object.

Objects are useful to group together methods and properties into one data structure. The final
element of JavaScript syntax that will be covered, the array, is also one that groups things
together.

Arrays
Assume you want to keep a list of 25 numbers. How would you go about keeping this list? You
could create 25 different variables to do so, but that would be unwieldy. You could make the
situation a little easier to handle by taking those 25 variables and encapsulating them in an
object, but it would still be an arduous process.

The correct thing to do in this situation is to use an array. An array contains several pieces of
data that are referred to as elements. Arrays enable you to hold an arbitrary number of ele-
ments without defining beforehand what these elements will hold.

An array is created much like an object, using Array as the constructor, with the number of
elements that it will hold as the argument for that constructor. Assume you wanted to create an

105

5

II
Part

Ch

array called allNames that holds 5 different names. You would create it in the following man-
ner:

allNames = new Array(5);

Now, if you want to assign values to the different elements of the array, list the number of the
element that you want to access in brackets([and]) following the name of the array as shown
in the following code:

allNames[0] = “Fred”;
allNames[1] = “Mary”;
allNames[2] = “John”;
allNames[3] = “Tim”;
allNames[4] = “Mark”;

The number that is used to refer to individual elements of an array is known as the element’s
array index. This index number enables each element to be addressed uniquely. Array indexes
start at 0 and count up to the position of the last element of the array.

Referring to elements in an array may not be an obvious process because people are used
to starting to count beginning at 1. The first element of an array is always at position 0, not

position 1. Therefore, the last position of an array with 5 elements is 4, not 5. ■

An Example JavaScript Program
After familiarizing yourself with the concepts in this chapter, you should now be familiar with
most of the components of JavaScript. The following program ties together many of the
JavaScript concepts you’ve learned in this chapter into a single working application.

The code in Listing 5.5 prints out a different greeting based on whether it is during the morn-
ing or not, then it prints out the name of the day of the week for today (see fig. 5.5 for sample
output).

Listing 5.5 Printing Output Based on Date in JavaScript

01. <HTML>
02. <HEAD>
03. <TITLE>
04. JavaScript Example 5
05. </TITLE>
06. </HEAD>
07. <BODY>
08.
09. <SCRIPT language=”JavaScript”>
10.
11. var today = new Date();
12.
13. if (today.getHours() <= 12)

continues

N O T E

An Example JavaScript Program

106 Chapter 5 JavaScript Primer

http://www.quecorp.com

14. document.write(“<p>Good Morning!”);
15. else
16. document.write(“<p>Good Day!”);
17.
18. document.write(“<p>Today is a “);
19. var todaysNum = today.getDay();
20. var todaysName = dayName(todaysNum);
21. document.write(todaysName);
22.
23. function dayName(day)
24. {
25. var names = new Array(7);
26.
27. names[0]= “Sunday”;
28. names[1]= “Monday”;
29. names[2]= “Tuesday”;
30. names[3]= “Wednesday”;
31. names[4]= “Thursday”;
32. names[5]= “Friday”;
33. names[6]= “Saturday”;
34.
35. return names[day];
36. }
37.
38. </SCRIPT>
39.
40. </BODY>
41. </HTML>

Listing 5.5 Continued

FIG. 5.5
A JavaScript date
program.

This program builds upon the JavaScript Date object, one of JavaScript’s built-in objects. When
you create a new Date object, all the information about today’s date and time is stored in that
instance of the object. One of the methods contained in that object is getHours(), which returns
the current hour of the day in military time.

107

5

II
Part

Ch

Therefore, after you have the information about what hour of the day it is, you can use a condi-
tional statement to determine whether or not to say “Good Morning!” or “Good Day!”, as dem-
onstrated in lines 11–16:

11. var today = new Date();
12.
13. if (today.getHours() <= 12)
14. document.write(“<p>Good Morning!”);
15. else
16. document.write(“<p>Good Day!”);

The next step is to determine the day of the week. You can get that information from the Date
object you’ve created via the getDay() method on line 19:

var todaysNum = today.getDay();

This code generates a number that corresponds to the name of the day of the week in relation
to today. Table 5.6 establishes the correlation between the number and the name of the day.

Table 5.6 Numbers for the Days of the Week

Number Day

0 Sunday

1 Monday

2 Tuesday

3 Wednesday

4 Thursday

5 Friday

6 Saturday

Because you wouldn’t want to print “Today is a 3,” you need to convert the day number into the
corresponding name. Because this is the sort of thing that you might want to do on a regular
basis, this would be a perfect place to use a function.

The function dayName() takes a day in number form and represents it in the variable day. The
first thing the dayName() function does is create an array with 7 elements, one for each day of
the week:

var names = new Array(7);

Next, the dayName() function places the name of the day of the week into the corresponding
element in the array:

names[0]= “Sunday”;
names[1]= “Monday”;
names[2]= “Tuesday”;
names[3]= “Wednesday”;

An Example JavaScript Program

108 Chapter 5 JavaScript Primer

http://www.quecorp.com

names[4]= “Thursday”;
names[5]= “Friday”;
names[6]= “Saturday”;

Finally, the dayName() function looks at the position in the array corresponding to the value
passed into the function. It then returns the name of the day needed by returning the value
associated with that position in the array.

return names[day];

This is a little tricky, so you might want to think it through a few times. If you look at table 5.6,
you’ll see that Wednesday corresponds to the number 3. Therefore, by placing “Wednesday”
in the element that will be returned by addressing the number 3 in the array, you can easily
retrieve that data.

Now all you need to do is use the dayName() function to convert the number for today into its
corresponding name:

var todaysName = dayName(todaysNum);

This example has covered many of the important JavaScript concepts that will be used through-
out this book. First, although you will usually not have to create your own objects, you will have
to use those provided by Dynamic HTML. Quite a bit of work was done with the Date object,
which reflects the sort of process that will be shown later.

Second, it is important to become familiar with the process of creating functions and their use.
A great deal of the work that you will do in creating your own dynamic web pages involves the
addition of functions that will be called when certain actions are taken by the user. This process
is known as event handling, and will be discussed in great detail in Chapter 7, “Event Han-
dling.”

JavaScript Resources
JavaScript was originally created by Netscape, and for the final word on general JavaScript
issues, the Netscape documentation is the best place to look:

http://developer.netscape.com/library/documentation/index.html

For documentation on JavaScript and JavaScript features unique to Internet Explorer 4.0, or to
make sure that a specific JavaScript feature is implemented in Microsoft’s version of JavaScript,
go to:

http://www.microsoft.com/jscript

From Here…
As mentioned in the beginning of the chapter, the use of a scripting language is essential to
Dynamic HTML because it is the tool that is used to drive Dynamic HTML.

109

5

II
Part

Ch

This chapter covered a lot of information. Don’t feel overwhelmed if you don’t understand
everything about JavaScript right now. The important thing is that you understand the basics
and return to this chapter if you’re confused by any JavaScript code presented later. From here,
the following topics are covered in the next chapters:

■ Chapter 6, “Dynamic HTML Object Model,” talks about the object model used by
Dynamic HTML that treats all HTML elements on a page as mutually aware objects.

■ Chapter 7, “Event Handling,” covers the importance of event handling in Dynamic
HTML-generated web sites.

From Here…

110 Chapter 5 JavaScript Primer

http://www.quecorp.com

111

6

II
Part

Ch

T

6C H A P T E R

The Object Hierarchy

The first aspect of the Dynamic
HTML Object Model you need to
know is the Object Hierarchy. The
Object Hierarchy, contained within
the window object, contains all
aspects of the current window and
document that is being shown in the
browser.

Collections

Collections are objects that Dynamic
HTML uses to group the elements
of an HTML document together.

Elements

The element is the basic way that
HTML is broken up. The element
object is just the representation of
an HTML element as a scripting
object.

window Object

At the core of the Dynamic HTML
Object Model is the window object.
The window object contains all the
information about the state of the
browser window and all that it
contains.

document Object

The document object contains all the
information about the HTML docu-
ment that the browser is currently
viewing. Any portion of the HTML
document that you want to access
with scripting is contained here.

Dynamic HTML
Object Model

he fact that Dynamic HTML has something called an
object model might sound a bit imposing at first, but don’t
worry, it’s actually pretty simple. Using an object model
means you just have to look at something you’re quite
used to and comfortable with in a new and more powerful
way.

What is an object model? It’s the result of breaking up
something into objects. For instance, if you were to simu-
late all the components of an automobile via objects (an
engine object, a transmission object, and so forth), you
would then have an automobile object model for your
simulation.

The Dynamic HTML Object Model applies this same
process to the web browser and the HTML pages that are
contained within it. The Dynamic HTML Object Model
enables you to access aspects of the browser, such as its
history, as well as aspects of the web page it is currently
viewing, such as the HTML elements that make up that
page.

112 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

Although this is definitely a positive development, there is concern that the object model
Microsoft uses will not be the same as other browser vendors. One of the more arduous
aspects of working with the World Wide Web is the seemingly endless diverging standards for
how to do things. The World Wide Web Consortium (W3C) is trying to ensure that this doesn’t
happen with object models by creating a standard object model called the W3C Document
Object Model.

Microsoft has built the Dynamic HTML Object Model on the foundation proposed by the W3C
for the Document Object Model. Microsoft has also made it clear that they intend to follow
future W3C standards regarding the object model. ■

Viewing HTML Documents as Collections of Objects
Think of all the HTML pages you have written in the past. When you sit down to write a page,
you have to break sections of it up into separate logical pieces. For instance, even a simple
standard HTML document would have two sections:

■ The header (<HEAD>)

■ The body (<BODY>)

Through this process of creating a BODY and HEAD, you are used to having some structure to
your HTML document. Other than breaking up your document into these two pieces, however,
you probably think of the rest of your HTML document as the rest of the HTML elements
added in a linear fashion.

The Dynamic HTML Object Model presents the HTML page and the browser itself as a large
collection of objects. By doing this, you can access any portion of the page that you want by
descending into the collection of objects and retrieving the portion you want.

For example, the Dynamic HTML Object Model contains an object called body that enables
script writers to access the elements in the BODY of the document directly. It also contains an
object named location that enables script programmers to find out information about the page
currently being viewed, such as the page’s URL or the protocol used to view it.

This type of programmatic capability to retrieve the state of the page will become quite valu-
able later in the book when you start changing the content or style of page elements on the fly.
For instance, you might want to limit your changes to the head or the body of the document.
The Dynamic HTML Object Model provides you with the tools to achieve this.

Language Independence in the Dynamic HTML
Object Model

Object models are a standard way of breaking up complex data into manageable pieces, but in
the past object models have been tied to one specific language. The Microsoft Office Object

113

6

II
Part

Ch

Model, for instance, is an object model for the entire Microsoft Office Suite. Through this
object model, programmers access and change the state of the applications and documents
contained within them.

One of the big disadvantages of an object model such as the Microsoft Office Object Model,
however, is that it is tied to a specific programming language, which in this case is Visual Basic
for Applications. Therefore, you cannot use other common programming languages, such as
Java or Pascal.

This causes problems in two ways. First, a different object model must be developed for
each language, which is essentially reinventing the wheel over and over. Second, a language-
dependent object model focuses too much attention on the language used and not enough
attention on the project at hand.

The Dynamic HTML Object Model strives to make this a non-issue by being completely lan-
guage independent. You can just as easily access and use the object model with VBScript as
you can with JavaScript. With a little more work you can also access and use the object model
with Java or C++.

Making the Dynamic HTML Object Model language independent should be an important
contributor to its success because it doesn’t force developers to make the difficult choice of
selecting a standard language for Dynamic HTML development. If your favorite scripting lan-
guage is JavaScript, great; but if you’re a VBScript proponent, you’re not left out in the cold.

Building Upon Netscape’s Efforts
If you’re used to using JavaScript in Netscape Navigator to do programming with forms, the
Dynamic HTML Object Model should seem quite familiar to you. Microsoft originally incorpo-
rated Netscape’s object model into Internet Explorer 3.0 with minor additions. With Internet
Explorer 4.0, however, Microsoft has extended Netscape’s object model to cover almost every
conceivable aspect of the browser and the HTML document that resides within it.

Netscape Navigator 2.0 and up enable you to access forms and form elements by a straight-
forward syntax. If, for instance, you had a form called entry with a text field called user, you
could access the value of that field in the following manner:

document.entry.user.value

Dynamic HTML takes this process to its logical extreme. The current URL that the browser
window is viewing, for instance, is contained in an element called location in the window object:

window.location

In the same way, the entire body of the HTML document is contained in a collection of objects
called all, which is contained in the document object that is contained in the window object:

window.document.all

Building Upon Netscape’s Efforts

114 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

Understanding the Dynamic HTML Object Model
Now that you have an idea of what an object model is and how it may be used, it’s time to take a
look at the specifics of the object model Microsoft has implemented for Dynamic HTML inside
Internet Explorer 4.0.

The core of the Dynamic HTML Object Model is its Object Hierarchy. The Object Hierarchy is
shown in figure 6.1. The Object Hierarchy is where all of the objects that you will need to ac-
cess and modify the state of the browser and the HTML page are stored.

FIG. 6.1
The Dynamic HTML
Object Hierarchy.

The first point to note about the hierarchy is that all of the objects in the hierarchy are con-
tained within the window object. Therefore, to get to the document that is contained inside the
current window, you use the document object contained within the window object.

The second important point to note about the hierarchy is that in addition to objects, which
you’re familiar with, there are also things in the hierarchy known as “collections” that haven’t
been discussed yet.

115

6

II
Part

Ch

Therefore, before discussing the Object Hierarchy in greater detail, take some time to learn
what a collection is so that when the different collections are considered, they will be familiar
to you.

Collections
A collection is a set of things grouped together by the Dynamic HTML Object Model. A typical
HTML document, for example, is a collection of links, frames, forms, and other elements such
as images.

Think of a collection as a wrapper around a large number of objects. You normally wouldn’t use
a collection in and of itself, but instead you could use it to access the objects that it contains.

Consider a real world example. Suppose that there was an object that represented a candy shop
that you were running. You might use a collection to represent your inventory that contained
objects representing the candies that you currently have in stock.

Collections are mainly used for grouping like things together. This enables you to access
things that are similar to one another on a page quickly and easily.

This is a bit theoretical, so perhaps you should consider an example of a collection that might
be useful to you as a programmer. One of the core collections contained in the Dynamic HTML
object model is the document.all collection. This collection, which contains all the HTML ele-
ments on a given HTML page, is discussed later in this chapter.

Accessing Collection Elements
Because collections are used to group elements, it makes sense to have ways to access those
elements from the collection. Elements can be extracted from all Dynamic HTML collections
via the three methods described in table 6.1.

Table 6.1 Collection Methods

Collection Access Methods Description

item(string) Returns all the elements in the collection with the
specified name or id. If more than one element is
returned, a collection containing those elements is
returned.

item(number) Returns the element in the collection at the position
specified as the argument.

tags(tagName) Returns a collection containing only the specified tag.

The item(string) method enables you to access elements in the collection by specifying the
element’s name or id. For instance, suppose an element exists in your HTML document with

Collections

116 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

the name “myElement”. You could return that element by using the item() method with the
name of the element “myElement” as an argument as demonstrated in the following line:

document.all.item(“myElement”)

If more than one element matches the name or id that you pass to the item() method, a
collection containing all the elements that match the given criteria is created. Then what is

returned by the item() method is not an element, but actually another collection. You would then use
one of the collection methods again, such as item(), to retrieve the elements from that collection. ■

The second way to extract an element from a collection is to use a number as an argument to
the item() method to return that element, assuming you know exactly where in the collection
an element is located. The first element of the document.all collection, for example, is the
HTML element. Therefore, you could access the HTML element with the following code:

document.all.item(0)

Much like an array, the first element in a collection is always located at position 0. This is
important to remember, because it is easy to get confusing bugs if you forget this and try to
access it at position 1. If you access an element at position 1, instead of returning the first
element of the collection, the second element will be returned. The tags(tagName) method
enables you to retrieve all the elements in the collection that use the specified tag. The value
returned is another collection that contains all of these elements. The tags(tagName) method
uses the name of the tag as an argument to search for it as the element.

Suppose, for example, that you want to get a collection of all elements in the document that use
the <P> tag. You would then use the following code:

document.all.tags(“P”)

Returning the Length of a Collection
Collections only have one property—length. This property enables you to know how many
elements are currently contained within the collection.

Let’s expand on the previous example. You’ve already learned how to get a collection that con-
tains all the elements in the document with the <P> tag; however, how do you determine the
number of paragraph tags in the document?

The following example counts the number of paragraphs in an HTML document. Figure 6.2
shows the output from listing 6.1.

Listing 6.1 Using the document.all Collection to Count HTML Elements

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Special Edition Using Dynamic HTML, Chapter 6, Example 1
05. </TITLE>
06. </HEAD>

N O T E

117

6

II
Part

Ch

07. <BODY>
08. <P>This example demonstrates collections in Dynamic HTML
09. <P>There are 4 paragraphs in this document
10. <P>And we’re using the tags method to return a collection
11. <P>Then using the length property to count the paragraphs
12. <SCRIPT language=”JavaScript”>
13. var pgraphs = document.all.tags(“P”);
14. var numpgraphs = pgraphs.length;
15. alert(numpgraphs + “ total paragraphs”);
16. </SCRIPT>
17. </BODY>
18. </HTML>

The first important thing to pay attention to in this example is that the body text of the docu-
ment contains four <P> tags. Therefore, document.all contains four paragraph elements.

The tags() method of the document.all collection specifies a subcollection containing all the <P>
tags. This collection containing the <P> tags is assigned (returned) to the variable pgraphs as
shown in the following code:

var pgraphs = document.all.tags(“P”)

The number of <P> tags in the <P> tag collection is then determined using the collection’s
length property on line 14. Because this collection contains all the tags in the document that are
of the <P> tag type, the length of this collection is the number of paragraphs in the document:

var numpgraphs = pgraphs.length;

Finally, the alert() function on line 15 is called to show the number of paragraphs in the docu-
ment, which in this case is four:

alert(numpgraphs + ” total paragraphs”);

A method of the window object, alert() pops up a message box containing the string passed as
an argument. The window object is at the very top of hierarchy of the object model.

FIG. 6.2
Counting
paragraphs with the
document.all
collection.

Collections

118 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

Elements
The elements that are returned through collections in Dynamic HTML are the same HTML
elements that you’re used to using with regular HTML. The difference is that they are now
objects that you can manipulate and from which you can return information.

This may seem strange, but it makes quite a bit of sense. For instance, every element in a
collection is defined by a certain type of tag. Therefore, it is completely logical to make an
element an object with a property that contains the name of its tag.

In the same way, it follows that an element object should know its ID or CSS style. The element
object wraps all this information up for you, and an element object is created for every HTML
element in the document.

If you placed an <H1> element in your HTML document, for example, a corresponding object
would be created in the object hierarchy. This object is known as the tag’s element object. This
distinction may be a bit confusing. However, all you need to remember is that the element you
placed in your document and its corresponding element object are the same thing. The differ-
ence is that the element object is accessible via the Dynamic HTML Object Model.

Like any object, these element objects have methods and properties. These methods and prop-
erties enable you to find out the information that makes up the element that it represents.
There are certain properties and methods that will be present for all element objects, and these
will be discussed next.

Element Properties
All HTML elements in the Dynamic HTML Object Model are guaranteed to have a set of proper-
ties associated with them, no matter what their type. This standardization means that you can
write functions that can depend on a core set of properties without worrying about what type of
HTML element is being accessed. Table 6.2 lists these core properties. These properties can
contain any valid variable type, such as a String, an Integer, a Boolean, or even an Object.

Table 6.2 Element Properties

Property Description

document The document that contains this element

id The id of this element

left The position of this element in relation to the left side of the window

top The position of this element in relation to the top of the window

tagName The name of the tag that this element is an instance of (always uppercase)

style An object containing the style of this element

parentElement The element that contains this element

ClassName Returns the class specified for this element

119

6

II
Part

Ch

The following example in listing 6.2 demonstrates a few of these core properties in action.
Figure 6.3 shows the output from listing 6.2.

Listing 6.2 Determining HTML Element Properties

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Special Edition Using Dynamic HTML, Chapter 6, Example 2
05. </TITLE>
06. </HEAD>
07. <BODY>
08.
09. <P id=para left=100 top=100>
10. Basic element properties in JavaScript
11.
12. <SCRIPT language=”JavaScript”>
13. var pgraph = document.all.tags(“P”).item(0);
14. document.write(“<P>id : “ + pgraph.id);
15. document.write(“<P>tagName : “ + pgraph.tagName);
16. document.write(“<P>top : “ + pgraph.top);
17. document.write(“<P>left : “ + pgraph.left);
18. </SCRIPT>
19.
20. </BODY>
21. </HTML>

Most of the code here should be familiar to you. You may remember the use of inline styles
from Chapter 4, “Cascading Style Sheets Primer.” Inline styles used in the preceding code set
the id and the left and top style of the element.

Later, in the JavaScript portion of the document, these properties are retrieved by accessing
the properties of the element. Note that the generic tags() method of the document.all collec-
tion retrieves the element instead of accessing the element by its ID.

FIG. 6.3
Looking at the
properties of an
element.

Elements

120 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

The four properties accessed as shown in figure 6.3 are a few of the more important generic
element properties as follows:

pgraph.id
pgraph.tagName
pgraph.top
pgraph.left

The id property is what uniquely identifies each HTML tag on the page, although more than
one tag can have the same id. This not a required attribute of the tag, so you do not have to
specify it. In such a case, the id property will be equivalent to “” (or a blank string) when you
access it through your script; however, there will always be some value for the property, so you
can always check for it.

The tagName property simply specifies the type of tag this element is. Therefore, for a <P> tag
it would be “P”, for an tag it would be “IMG”, and so on.

The top property represents the number of pixels from the top of the window at which the
element has been positioned. From the example, this element has been given a top position of
100, so the top property is returned as 100 as well.

Much like the top property, the left property is the number of pixels from the left-hand side of
the window at which the element has been positioned. This element has also given a left posi-
tion of 100, so its left property is 100.

In addition to these core properties, additional properties may exist that a particular element
can access. A Button element, for instance, has a property called disable that can be used to
allow the button to be clicked or not, depending on its value.

Element Methods
In addition to the properties present in elements, there are also methods that all elements are
guaranteed to have. These elements allow you to perform actions upon the element in ques-
tion, such as making sure that it is currently viewable in the browser window.

Two important methods are guaranteed to be present in every element object: contains() and
scrollIntoView().

The contains() method is used with HTML elements that can contain other HTML elements,
such as a <DIV> element or a element. This method provides a quick and convenient
way to determine what is and is not contained within an HTML element. The contains()
method is called by passing the object containing the element to search for as the argument:

element.contains(searchElement)

The contains() method then returns a Boolean value indicating whether the element being
searched for is contained within the element that was specified for searching. The contains()
method returns true if the element is found and false if it is not.

The second important method is scrollIntoView(). This method makes sure that the element
that is being called on is brought into the portion of the window visible to the user by scrolling

121

6

II
Part

Ch

it. The scrollIntoView() method takes a Boolean argument that determines whether the ele-
ment scrolls to the first line of the display (if the argument is true) or the last line of the display
(if the argument is false). The following statement would scroll the element to the first line of
the display:

element.scrollIntoView(true);

The window Object
At the very foundation of the Dynamic HTML Object Model is the window object. The window
object contains everything that is accessible to programs via the object model: the elements,
frames, images, browser window history, and almost anything else that you might need to
access through the browser.

A breakdown of the most important collections, methods, and properties available in the win-
dow object is listed in table 6.3. You’ve already become familiar with properties and methods
and their uses, and events are covered in the next chapter.

Table 6.3 Components of the window Object

Collections Frames

Methods item, navigate, blur, focus, alert, confirm, prompt, setTimeout, clearInterval,
setInterval, showHelp, execScript, clearTimeout, close, open, scroll,
showModalDialog

Properties document, location, history, navigator, event, visual, client, closed,
defaultStatus, dialogArguments, dialogHeight, dialogLeft, dialogTop,
dialogWidth, length, name, offscreenBuffering, opener, parent, returnValue,
screen, self, status, top, window

Events onfocus, onload, onunload, onblur, onhelp, onerror, onbeforeunload,
onresize, onscroll

The basic structure of the window object is shown in figure 6.4. You can see that the window
object is the root of the object model and that all the other objects are contained in the window
object.

Complete details on the properties and methods for all of the objects in the Dynamic HTML
Object Hierarchy are available in Appendix D, “Scripting Objects, Collections, Methods, and

Properties.” ■

document Object
The document object contains all the information pertaining to the HTML document. This
includes all the tags in the document, collections of all the common types of elements, and
methods to access the textual content of the document. In fact, the document object is so impor-
tant that it is covered in detail in a later section.

N O T E

The window Object

122 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

location Object
The location object contains all the information on the location that the window is currently
displaying and all the details on that location (the port, the protocol, and so on). In addition,
this object also contains a method that causes the page to reload.

Take a look at the important properties of the location object:

■ href—The href property is the entire URL of the current page. Using this property, you
can specify the location of other URLs. This is the equivalent of typing the URL in the
Address box in IE. For instance, to go to the Internet Explorer page from the current
page, you would use: location.href = “http://www.microsoft.com/ie”;.

■ protocol—The protocol is the method that the browser uses to retrieve the URL. For
the Internet Explorer web page, the protocol is http:. Other common protocols are file:
and ftp:.

■ host—The hostname is the name of the host machine on which the current URL is
located. In the case of the IE site, the hostname is www.microsoft.com. If there is a port
specified in the URL (such as “www.micrsoft.com:8888”), it is included.

FIG. 6.4
Structure of the window
object.

123

6

II
Part

Ch

■ hostname—The name of the host machine on which the current URL is located. Unlike
the host property, the port is not included, even if specified.

■ hash—The hash property includes the section of the URL following the hash character
(‘#’) if any.

■ search—The search property includes the section of the URL following the question
mark character (‘?’) if any.

■ port—If a specific port is specified in the URL, its value is located in the port property.

■ pathname—This property contains the path to the specified location on the host. For
the Internet Explorer example, this is: ie.

The location object also contains two methods:

■ reload()—The reload() method takes no arguments and simply causes the current page
to be reloaded. This behavior is exactly the same as if you were to hit the Reload button
on a web browser.

■ replace(URL)—The replace(URL) method takes one argument—an URL. It then causes
the browser to replace the current document with the one specified by the URL argu-
ment.

history Object
The history object contains all the URLs the user has visited during a session—a session being
every time Internet Explorer is launched. This will also be referred to from here on as the
history list.

One property is supported by the history object: length.

The length property specifies how many URLs are contained in the current history object. The
URLs saved are identical to those shown in the browser’s history list.

The history object also has three methods: back(), forward(), and go().

The forward() and back() methods enable the browser to be moved backward and forward in
the history list programmatically. The back() method is identical to hitting the Back button in a
browser window. Similarly, the forward() method is identical to hitting the Forward button in
the browser window. Neither method takes any arguments. Therefore, to go back one URL in
the history, use the following code:

window.history.back();

In addition, the window object is always the default object when scripting. Therefore, if you
like, you can leave off the window object reference:

history.back();

The go() method enables you to go to a specific place in the browser history by passing an
argument indicating where you want to go. The go() method can be called in two ways. The
first way is to pass a partial URL to go to. If, for instance, you knew that you had been to part of

The window Object

124 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

the Internet Explorer site and wanted to go back to where you were, you would call the go()
method in the following manner:

window.history.go(“http://www.microsoft.com/ie”);

Or:

history.go(“http://www.microsoft.com/ie”);

This would take you to the URL in the history list that contains “http://www.microsoft.com/
ie”. Note that this does not need to be the full URL; it just needs to be a part of it.

The second way to use the go() method is by specifying a number that corresponds to the
location in the history list where you want to go. To go to the first location in the history list,
for example, you would do the following:

window.history.go(1)

Or:

history.go(1);

CAUTION

It is important to remember that the first position in the history list is indicated by 1, rather than the 0 that
you use when you access collections or arrays.

frames collection
The frames collection contains all the frame windows contained in the current window being
displayed in the browser. It is important to note that what is contained in the frames collection
is not the frame elements themselves, but the window objects associated with those frames.

Let’s consider an example. Let’s say you wanted to retrieve the name of the first frame con-
tained in the current window. You would use the following code:

window.document.frames(0).name;

screen Object
When designing content for the web, it is often aggravating to not know the abilities and size of
the screen on which the content will be displayed. For instance, if you knew that the screen
you are working on is only 640 by 480 pixels, it would be nice to know this ahead of time if you
are planning to render content that will require 800 by 600 pixels.

The screen object allows you to retrieve this sort of information. The following properties are
available to you:

■ height—The height of the screen in pixels.

■ width—The width of the screen in pixels.

■ colorDepth—Contains the number of color bits per pixel for the screen.

125

6

II
Part

Ch

■ bufferDepth—Specifies whether or not there is an offscreen basket.

■ updateInterval—Specifies how often, in milliseconds, the screen is updated.

navigator Object
The navigator object enables you to access general information about the browser program. It
is important to figure out at runtime what the browser does and does not support, in addition
to being able to make decisions based upon which browser you might be running.

For instance, Netscape Communicator does not support a great deal of the functionality con-
tained in Internet Explorer 4.0. If you were to try and use this functionality, errors would be
generated. Therefore, you might want to check ahead of time to see whether the functionality
you desire is available before using it.

There is also the unfortunate fact that although standards programs are supposed to act the
same, in reality they don’t. By checking the type of browser you are working with ahead of
time—along with the knowledge of the incompatibilities between browsers—you can adjust for
those differences at runtime, rather than having to distribute entirely different versions of the
program.

Five important properties are supported by the navigator object.

■ appName—Returns the name of the browser that is processing the script. The
appName property is accessed in the following manner:
navigator.appName

In the case of Internet Explorer, the value of the appName property is “Microsoft
Internet Explorer”.

■ appVersion—Returns the version number of the browser and is accessed in the
following way:
navigator.appVersion

In the case of IE 4.0, the following is returned: “4.0 (compatible; MSIE 4.0; Windows
95)”. The first part of the information returned is the major and minor version number of
the browser, separated by a period—any additional information about this version of the
browser is returned inside parentheses. Note that one of the extra pieces of information
returned is the name of the platform that the browser is running on, which in this case is
Windows 95.

■ appCodeName—Supplies the application’s code name for compatibility reasons to show
that the browser is compatible with Netscape Navigator, which was the dominant
browser for several years. The value returned by IE 4.0 is “Mozilla”, which is the code
name of Netscape’s browser.

■ userAgent—Supplies the user agent, which is the exact string that is sent via HTTP as
the user-agent header when communicating with a web server:
Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)

The window Object

126 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

Note that once again “Mozilla” is sent, along with a version number. This is for compat-
ibility reasons because quite a bit of content on the web checks to see whether you are
running a new version of a Netscape browser, and uses that information to determine
your browser’s capabilities.

■ cookieEnabled—Returns whether “cookies” are supported in this browser. Cookies
simply store information on your machine to customize future trips to that server. There
has been quite a bit of debate, however, over the security risks posed by cookies, so
many browsers now enable you to turn cookies off. The cookieEnabled property enables
you to know whether cookies have been turned off. The value of this property in a
default installation of Internet Explorer 4.0 is “true”. This means that cookies are indeed
enabled in the browser running the script.

■ javaEnabled—Returns true if the Java Virtual Machine is available in the browser and
false otherwise.

event Object
The event object makes available information on the current event that is being processed. An
event is the browser’s way of telling you that the user is interacting with the browser.

Chapter 7, “Event Handling,” discusses events and event handling in more detail.

The following properties are available in the event object:

■ altKey—True if the Alt key is pressed when the event was fired, false otherwise.

■ button—The mouse button that has been pressed: 0 if no button was pressed, 1 if the
left button was pressed, 2 if the right button was pressed, and 4 if the middle button was
pressed.

■ cancelBubble—True if the current event should bubble up the event hierarchy, false
otherwise.

■ clientX—The X position of the mouse relative to the client area of the window.

■ clientY—The Y position of the mouse relative to the client area of the window.

■ ctrlKey—True if the Control key was pressed when the event was fired, false otherwise.

■ fromElement—The last element that the mouse was over before it was over this one.

■ keyCode—The code of the key that was pressed when the event was fired.

■ offsetX—The X position of the mouse when the event was fired relative to the container
that received the event.

■ offsetY—The Y position of the mouse when the event was fired relative to the container
that received the event.

■ reason—The current condition of the data transfer object. Can be one of three states:
0 if the data was transferred successfully, 1 if the data transfer was aborted, and 2 if there
was an error in the data transmission.

■ returnValue—The return value from the event.

127

6

II
Part

Ch

■ screenX—The X position of the mouse relative to the size of the screen rather than the
browser window.

■ screenY—The Y position of the mouse relative to the size of the screen rather than the
browser window.

■ shiftKey—The state of the Shift key when the event was fired. The value is true if it was
pressed, false otherwise.

■ srcElement—The element that originally fired the event that is now being handled.

■ srcFilter—The filter object that fired the onfilterchange event.

■ toElement—The element that the mouse moved to after it left the current one.

■ type—The name of the event as a string. The name of the event is retrieved without the
“on” prefix. Therefore “onmouseover” would just be “mouseover.”

■ x—The X position of the mouse object when the event was fired relative to the nearest
parent object that was positioned with CSS Positioning.

■ y—The Y position of the mouse object when the event was fired relative to the nearest
parent object that was positioned with CSS Positioning.

The document Object
Whereas the window object contains all the pertinent information about the state of the
browser window, the document object contains all the information you might want about the
document that the browser is currently showing. Figure 6.5 shows the relationship between
the document object and the objects it contains.

The document object can be accessed in two ways. The first and more correct way to access it
is through the window object—remember that the document object is contained by the window
object. Therefore, to access the “all” collection of the document object, use the following
syntax:

window.document.all

For compatibility with older browsers, however, an alternate way to access the document object
is by using the keyword document by itself, followed by any methods or properties you may
want to access. This is due to the fact that the default object when scripting is the current win-
dow object. In the case of the previous “all” example, you would use the following syntax:

document.all

This provides the same information that is returned if you had appended the window object
before it, which is the document object that the browser window is currently viewing. The
procedure you use is largely a matter of preference: If you want to be as specific in your code
as possible, use window.document.all, otherwise just use document.all.

All the collections, methods, properties, and events supported in the document object are
shown in table 6.4. The entire HTML document that is being viewed is contained inside this
object and can be accessed via the collections contained within it.

The document Object

128 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

FIG. 6.5
Structure of the
document object.

129

6

II
Part

Ch

Table 6.4 The document Object

Collections anchors, links, forms, all, applets, frames, images, scripts, embeds, plugins

Methods close, open, clear, write, writeln, rangeFromText, rangeFromElement,
execCommand, queryCommandEnabled, queryCommandText,
elementFromPoint, queryCommandSupported, queryCommandState,
queryCommandIndeterm, createElement

Properties alinkColor, linkColor, vlinkColor, mimeType, title, bgColor, link, vLink, aLink,
cookie, lastModified, charset, location, referrer, fgColor, activeElement,
strReadyState, domain, URL, fileSize, fileCreatedDate, fileModifiedDate,
fileUpdatedDate

Events onclick, onmouseover, ondblclick, onkeypress, onmousedown, onmousemove,
onmouseup, onkeydown, onkeyup, onmouseout, onreadystatechange, onhelp,
onbeforeupdate, onafterupdate

In addition to the data that makes up the HTML page, the document object also has a great deal
of useful information about the document itself, which is exposed through the document
object’s properties. The following list takes a closer look at a few of the more important proper-
ties:

■ linkColor—This property is the color in which standard links are displayed. This value
is given as a hex RGB value preceded by a “#”. The default link color in IE 4.0 is
#00000FF, which is the hexadecimal value for blue.

■ vlinkColor—The color in which visited links are displayed. This value is also given as a
hex RGB value. Its default value is #FF0000, which is the hexadecimal value for red.

■ alinkColor—The color in which links are displayed after the mouse is pressed on them,
but before the mouse button is released. The value is given in hex form. The default
color value for IE 4.0 is also #FF0000.

■ activeElement—The element that currently has the focus.

■ URL—This documents the entire URL as a string.

■ mimeType—The MIME standard enables you to specify different viewers for different
types of content. For instance, the MIME type of a TIFF image is “image/tiff”. The
standard MIME type for HTML documents in IE 4.0 is “text/html”.

■ title—The title property is simply the name given to the document inside the HTML
<TITLE> tag.

■ bgColor—The bgColor property defines the background color of the document. The
default color is the hexadecimal value for white (#FFFFFF).

■ cookie—The cookie property stores the value of the cookie for the current page. On a
standard HTML page without a cookie, this value is blank. This property can also be
used to create a cookie for the current page.

The document Object

130 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

■ lastModified—The lastModified property gives the date and time this document was last
changed. For instance, if the file was last modified on June 16, 1997 at 11:24 a.m., the
value of this property would be “06/16/97 11:24:00”.

■ charset—The charset is the character set with which this document is encoded. For
browsers using the English language, this value will be “iso-8859-1”, which is the
standard character set for English.

■ location—The location property is simply the URL that contains this document. If, for
instance, you were viewing the Internet Explorer page at microsoft.com, this value would
be “http://www.microsoft.com/ie”.

■ referrer—The URL of the page that was viewed previous to this one. For example, had
you viewed the main Microsoft page before viewing the Internet Explorer page, this
value would be “http://microsoft.com”. If there is no referring page, then the value of
this property is blank.

■ fgColor—The fgColor property contains the color that HTML text will use in the
document by default (if the text color is not specified for that section of text). This value
is also specified as an RGB hex number.

■ strReadyState—The strReadyState property enables you to know whether or not the
page has been completely downloaded. It has four possible values. The first value is
“uninitialized”, which is the value when the document is first beginning to load. As it
loads, the value changes to “loading”. Then, when enough of the document is loaded that
it can be interacted with—for instance, links can be clicked before images are done
loading—the value changes to “interactive”. Finally, when the document is finished
loading, the strReadyState property changes to “complete”.

■ domain—The domain property provides the domain name of the web server that is
supplying the document. In the example of the Microsoft web server, this value would be
“www.microsoft.com”. If you are not loading the document from a web server, then this
value is blank.

■ fileSize—The fileSize property is the length of the document loaded in bytes.

■ fileCreatedDate—The fileCreatedDate property provides the day on which the file was
created. Unlike the lastModified property, fileCreatedDate spells out the date. So, a
sample date might be “Monday, June 17, 1997”.

■ fileModifiedDate—The fileModifiedDate is the day on which the file was last modified.
This is much like the lastModified property, except that it does not give the time at which
the document was last modified. Like the fileCreatedDate property, the date is spelled out
in long form.

■ fileUpdatedDate—At first glance the fileUpdatedDate property might appear to be the
same as the fileModifiedDate property; however, this is not the case. The fileUpdatedDate
property provides the date that the file was last reloaded by the local browser from the
remote server. Like fileCreatedDate and fileModifiedDate, fileUpdatedDate spells out the
date in long form.

131

6

II
Part

Ch

selection Object
Much like a text editor or word processor, Internet Explorer enables users to select text inside
the document. This is done by holding down the mouse button and dragging the mouse
pointer over the text that the user wants to select.

Information about the text the user has currently highlighted with the mouse is available in the
selection object. This can be useful if you want to do some action based upon what the user has
selected, perhaps highlighting it or changing its font.

The selection object has one property—type, which defines the type of selection. This can be
one of two values: 0 if there is no selection insertion point, or 1 if the selection is a text selec-
tion and there is in fact an insertion point

The selection object has three methods as follows:

■ clear—Clears the contents of the selection.

■ createRange—Creates a text range over the selection.

■ empty—Deselects the current selection.

body Object
The body object contains information about the HTML elements that make up the visible part
of the HTML document in the current browser window. The body object corresponds to the
BODY element in the HTML document.

Here are the properties contained in the body object:

■ accessKey—The accelerator for the body.

■ background—The picture in the background of the body.

■ bgColor—The background color for the body.

■ bgProperties—The properties for the background picture, such as whether the picture
scrolls on the page.

■ bottomMargin—The bottom margin in pixels for the body of the page.

■ className—The CSS class name associated with the body of the page.

■ clientHeight—The height of the body in pixels.

■ clientWidth—The width of the body in pixels.

■ document—The document object for the body.

■ id—The CSS Identifier for the body.

■ innerHTML—The HTML code between the start and end tags of the body.

■ innerText—The HTML code between the start and end tags of the body represented
purely as text.

■ isTextEdit—Whether the text range can be edited. True if it can, false otherwise.

The document Object

132 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

■ lang—The ISO code for the language being used. Note that this is not the scripting
language, but the actual written language being used.

■ language—Specifies the computer scripting language in which the current script is
written.

■ leftMargin—The left margin for the entire page represented in pixels.

■ offsetHeight—The height of the body in pixels, relative to the parent.

■ offsetLeft—The left position of the body in pixels, relative to the parent.

■ offsetParent—The object that contains the body and provides the offset.

■ offsetTop—The top position of the body in pixels, relative to the parent.

■ offsetWidth—The width of the body in pixels, relative to the parent.

■ parentElement—The parent element of the body.

■ parentTextEdit—The next element in the object hierarchy on which a text range can
be created.

■ rightMargin—The right margin for the entire page represented in pixels.

■ scroll—Whether the scroll bars are on or off. If “yes” they are on, if “no” they are off.

■ scrollHeight—The scrolling height of the body in pixels, including content that is not
visible.

■ scrollLeft—The amount in pixels between the left edge of the body and the left edge
that is currently visible to the user in the browser.

■ scrollTop—The amount in pixels between the top edge of the body and the left edge
that is currently visible to the user in the browser.

■ scrollWidth—The scrolling height of the body in pixels, including content that is not
visible.

■ sourceIndex—The position of the body in the document’s source index.

■ style—The inline style sheet for the body .

■ tabIndex—The tab index for the body.

■ tagName—The tag for the current element (the body tag).

■ text—The text color for the body.

■ title—A tooltip for the body.

■ topMargin—The top margin for the entire page represented in pixels.

Here are the methods contained in the body object:

■ blur—Causes the body object to lose mouse and keyboard focus.

■ click—Simulates the user clicking the mouse button.

■ contains—Returns true if the element passed as an argument is contained in the body,
false otherwise.

■ createTextRange—Creates a text range over the body.

■ focus—Causes the body to receive mouse and keyboard focus.

133

6

II
Part

Ch

■ getAttribute—Returns the value for the attribute passed as an argument.

■ insertAdjacentHTML—Inserts HTML code passed as an argument into the body.

■ insertAdjacentText—Inserts text passed as an argument into the body.

■ removeAttribute—Removes the attribute passed as an argument from the body.

■ scrollIntoView—Scrolls the body into view.

■ setAttribute—Sets the attribute passed as an argument.

As mentioned previously, the document object contains the entire contents of the page in its
various collections. Figure 6.5 shows the relation of the various collections to the document
object. Each of these collections is described in more detail in the sections that follow.

all Collection
The all collection is perhaps the most important part of the document object. It is where all the
elements that make up the document are stored.

The most straightforward way to use the all collection is by accessing an element of the docu-
ment via its id. For instance, assume you had the following tag in your HTML document:

<P id=mainPara style=”font-weight: italic “> Dynamic HTML

You could then access that element through the document.all collection by using the id of the
tag:

var elem = document.all(“mainPara”)

To verify that you now have the correct element selected, you can use a logical expression in
an if statement:

if (mainPara == elem)
{
 document.write(“Selected correct element”);
}

If you want to access the elements of the page in a more general manner, you can select the
elements via the tags() method of the collection. Therefore, if you want to find all instances of
the <H1> tag inside your document, you would use the following code:

var allH1 = document.all.tags(“H1”);

This would return a collection containing all the desired <H1> elements in the document.

Several elements will always be present in the document.all object, even if you do not specify
them in the HTML document explicitly. These are known as Implied Elements. The four Im-
plied Elements are:

■ HTML—The HTML element is usually specified by the <HTML> tag at the top of the
document and surrounds the rest of the elements, indicating that they are HTML.

■ HEAD—The HEAD element is specified by the <HEAD> tag at the top of the document
and contains any elements that will not be part of the visible BODY portion of the
document.

The document Object

134 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

■ BODY—The BODY element is the main section of the HTML document and is specified
by the <BODY> tag. The BODY section of the HTML document is where the elements
that make up the content of the document are found.

■ TBODY—Finally, the TBODY element is where the content of tables can be found.
Unlike the previous three Implied Elements, which are recognized explicitly by most
HTML authors, TBODY is one to make sure you remember is implied.

anchors Collection
The anchors collection contains all the elements that contain an <A> tag in them. Anchors are
normally used in documents to specify hyperlinks, as in the following example:

The Microsoft Site

applets Collection
The applets collection is a slight misnomer for what it actually contains. From the name, you
would expect the applets collection to contain only applets, Java applets in particular.

Instead, the applets collection contains what Microsoft defines as all the objects in the docu-
ment. Once again, this is a bit confusing, as an actual <OBJECT> tag is defined in Dynamic
HTML, and the meaning in the applets collection is more encompassing than just elements that
use the <OBJECT> tag.

Instead, the objects that are contained in the applets collection include the following:

■ applets—Elements with the <APPLET> tag.

■ embeds—Elements with the <EMBED> tag.

■ images—All images in the document, usually specified with the tag.

■ objects—Any element that uses the <OBJECT> tag.

■ intrinsic controls—These are the controls that are built into Internet Explorer 4.0 by
default.

forms Collection
The forms collection contains all the forms present in the document. A form is defined as an
element that uses the FORM HTML tag. Dynamic HTML will enable you to place user inter-
face controls outside of a form, but it is important to note that these controls will not be present
in the forms collection.

images Collection
The images collection contains all the images in the document. An image is defined as an ele-
ment that used the IMG HTML tag. Images that are produced without an IMG tag, such as
from a Java applet or ActiveX Control, will not be present in this collection. All these images are
also contained in the applets collection.

135

6

II
Part

Ch

links Collection
The links collection contains all the hyperlinks in the document. This collection contains all the
elements in the anchors collection, plus all the elements that use the <AREA> tag.

frames Collection
The frames collection contains all the frames in the document. Frames are considered windows
themselves in HTML, so this collection contains window objects instead of the actual frame
element objects.

scripts Collection
The scripts collection contains all the scripts in the document. The scripts themselves are repre-
sented and can be retrieved as pure text.

embeds Collection
The embeds collection contains all the embedded content (plugins) in the document. Plugins
are programs that have been integrated into the browser to increase its functionality. The Real
Audio Player is a good example of a plugin.

plugins Collection
This is an alias for the embeds collection.

filters Collection
The filters collection contains all the Dynamic HTML Multimedia Filters for the document. A
filter enables the visible aspect of any element to be modified on the fly. For instance, there is a
blur filter that causes the content of an element to become blurry. Dynamic HTML Multimedia
Filters are covered in detail in Chapter 15, “Multimedia Filters and ActiveX Controls.”

styleSheets Collection
The styleSheets collection contains all of the style sheets for this document. A style sheet is
contained for each occurrance of a LINK or style element present in the document.

TextRange Object
In addition to the Dynamic HTML Object Hierarchy, there is a special object that is used quite
often when working with the Object Hierarchy. This object is the TextRange object and is used
to represent areas of text in your document.

At a core level, all HTML files are constructed out of pure text. This text normally has a great
deal of style associated with it, but at its core it is still pure text. TextRange objects enable you
to access this pure text directly.

TextRange Object

136 Chapter 6 Dynamic HTML Object Model

http://www.quecorp.com

Take a look at the following HTML code that defines a few tags that are rendered in different
sizes and styles:

<BODY>
 <H1>Example</H1>
 <H2>TextRange</H2>
 <P>This Example Examines Text Ranges
</BODY>

If you were to create a TextRange object for the <BODY> tag, it would contain the following
value:

“Example TextRange This Example Examines Text Ranges”

The simplest way to think of text ranges is by considering what the value of the text is after all
the tags are stripped away. In other words, the core textual information contained in the HTML
that you are considering.

TextRange objects are discussed and used heavily in Chapter 10, “Dynamic Content.” Dynamic
content is a method by which you can actually change what is being shown on the page in real-
time. TextRange objects enable you to find the text in the document that you want to change.

From Here…
This chapter discussed the many ways in which the Dynamic HTML Object Model can be
accessed. Although the material presented here might not seem too exciting, it is the structure
upon which Dynamic HTML is accessed and modified.

The benefits of the Dynamic HTML Object Model are covered in much greater detail when
you learn how to use it to modify the style and content of the document in realtime. You’ll
learn about these concepts in the following chapters:

■ Chapter 7, “Event Handling,” covers the importance of event handling in Dynamic
HTML-generated web sites.

■ Chapter 8, “Dynamic Styles,” will cover the process of changing the style of your HTML
elements on the fly.

137

7

II
Part

Ch

O

7C H A P T E R

Event Handling

ne of the foundations of Dynamic HTML is its capability to
interact with the user. Event handling is the procedure by
which user interaction is accomplished. Any time your
script gets information from the user, it is using event
handling.

Event handling can become quite complicated, but at its
core it is simple. Your program specifies what types of
interactions with the user that it is interested in. When-
ever the user performs one of those actions, your pro-
gram is notified that the action occurred.

In Dynamic HTML, you not only specify what type of
interaction you are interested in, but also the scope of the
interaction. You can specify, for instance, that you only
want to be notified of certain actions that occur to a spe-
cific HTML element, perhaps an image or a range of text.
Or, if you prefer, you can specify that you want to receive
notification of actions for the entire HTML body. ■

Event Handling

Discover what events are and how
you can use them to make your
HTML pages interactive.

Binding to Events

Learn three different ways to
attach events to your HTML
elements: binding via element,
SCRIPT...FOR, and VBScript
special syntax.

window.event Object

Discover how to use the
window.event object to find out a
great deal of specifics about the
event that was performed.

Default Actions

Many HTML elements have de-
fault actions associated with them.
Dynamic HTML enables you to
override these actions if you
choose. Techniques for doing this
are discussed in this chapter.

Event Bubbling

Learn how Dynamic HTML not
only fires events based on the
elements that they occur on, but
how it also sends the event to the
parents of the element. Find out
how to control this process.

138 Chapter 7 Event Handling

http://www.quecorp.com

Events
The most fundamental concept in event handling is that of the event itself. An event is a notifica-
tion from the browser that the state of things has changed in some way, normally by the user
performing an action.

All sorts of events can be generated and in turn, dealt with by scripting. Many of the more
common events and how to handle them with scripting languages are covered later in this
chapter. Although many types of events exist, basic events can be broken down into four dis-
tinct types.

■ Keyboard Events—The most basic keyboard event is generated by the user hitting
a key. There are, however, distinct events for the pressing of a key and the releasing
of a key, and events for pressing combinations of keys, such as the A and the Shift key,
for instance. An event for the pressing of the help key exists as well.

■ Mouse Events—Mouse events are the most common types of events in Dynamic
HTML because the main way that users interact with web pages is through the use of a
mouse. Much like keyboard events, events for clicking the mouse button, pressing it,
and releasing it are all separate—in addition, there is an event for the user double-
clicking the mouse button. Finally, events can be generated by the movement of the
mouse, regardless of whether or not the mouse button is clicked.

■ Focus Events—Events can be generated when an element gains focus and when it loses
focus. If you’re not familiar with the concept of focus, it is discussed further in the
section “Focus and Selection Events,” but for now it is sufficient to know that focus is a
concept used to describe with which element on the page the user is currently interact-
ing.

■ State Change Events—These events are not necessarily generated by user interaction.
Instead, state change events can be generated when the state of the document changes
in some important way. An event, for instance, can be generated when the document has
loaded enough that the user can interact with it, or another event can be generated when
the document has completely finished loading.

A few of the more common events that are used in Dynamic HTML have been discussed, such
as onclick, onmouseup, and onmousedown. These are a subset of a class of general events in
Dynamic HTML that will probably be the events that you use most.

These general events are available for every element in the document. Individual elements may
have additional events that are specific to them, but the general events are guaranteed to be
accessible for every type of element.

139

7

II
Part

Ch

The general events that are guaranteed to be available for every element are the mouse and
keyboard events. In addition to these types of events, the focus and state change events are
covered and the types of elements that they can be used with are discussed.

Mouse Events
The mouse events are all related to the user performing some sort of action with the mouse.
The user can perform two general types of actions with the mouse: click one of the mouse
buttons or move the mouse pointer around inside the browser window.

The first events covered in this section are those events generated when the user clicks the
mouse button. These mouse button–related events are delivered in a designated order as fol-
lows:

1. onmousedown

2. onmouseup

3. onclick

4. ondblclick

Next, you will learn about the events generated when the user moves the mouse. Much like
the mouse button–related events, mouse movement–related events are called in a specific
order:

1. onmouseover

2. onmousemove

3. onmouseenter

onmousedown The onmousedown event fires when the user presses a mouse button while
over an object. One important subtlety of the onmousedown event is that it is called before the
onclick event.

onmouseup The onmouseup event fires when the user releases a mouse button while over an
object. Unlike the onmousedown event, the onmouseup event is called after the onclick event.

onclick The onclick event fires when the mouse button is pressed and released while over an
object. Information about the mouse button that was pressed is available from the
window.event.button property (see the later section, titled “window.event Object”).

ondblclick The ondblclick event fires when the mouse button is clicked twice while over an
object. The mouse button must be clicked within the amount of time that the system allows for
a double-click.

Events

140 Chapter 7 Event Handling

http://www.quecorp.com

onmouseover The onmouseover event fires when the user moves the mouse pointer into the
range of the object. It is then not fired again until after the user moves the pointer out of the
object and then back into it again.

Dynamic HTML always remembers the last element that the mouse pointer was over before it
entered the current element. The object representing this element is available in the
window.event object as window.event.fromElement.

onmousemove The onmousemove event fires whenever the user moves the mouse pointer
within the range of the object. It is important to keep the event handler for this event as small
as possible because a large number of onmousemove events can easily be generated if the user
moves the mouse quite a bit.

onmouseout The onmouseout event fires when the user moves the mouse pointer out of the
range of the object. It doesn’t fire again until after the user moves the pointer back into the
range of the object and then back out again. This means that for every one time the
onmouseout event is fired, the user must have moved the mouse into the range of the object.

Dynamic HTML always remembers the next element that the mouse pointer entered after it
leaves the element that receives the onmouseout event. The object representing this element is
available in the window.event object as window.event.toElement.

Keyboard Events
Keyboard events are events generated whenever the user presses a key on their keyboard.
Events exist not only for the action of typing a key on the keyboard, but also for the pressing
down of the key and for the releasing of the key.

Similar to the mouse movement events, the keyboard events also are generated in a specified
order:

1. onkeydown

2. onkeypress

3. onkeyup

onkeydown The onkeydown event is generated whenever the user depresses a key, but before
it is released. The value of the key that was depressed is available from the window.event object
as window.event.keyCode. The value contained in keyCode is the UNICODE value associated
with the key.

141

7

II
Part

Ch

onkeypress The onkeypress event is generated whenever the user presses and releases a key.
The value of the key that was pressed is available from the window.event object as
window.event.keyCode. The value contained in keyCode property is the UNICODE value associ-
ated with the key.

In addition, the altKey, ctrlKey, and shiftKey properties are available from the window.event
object. Each of them is a Boolean property that is set to true if the corresponding modifier key
is pressed at the same time as the key that generated the event.

onkeyup The onkeyup event is generated whenever the user releases a key that has been
depressed. The value of the key that was released is available from the window.event object as
window.event.keyCode. The value contained in the keyCode property is the UNICODE value
associated with the key.

onhelp The onhelp event is a special event that is fired when the user is requesting help by
pressing a help-related key on the keyboard. Dynamic HTML defines two keys as being help-
related. First is the HELP key. Second is the F1 key, which is a traditional key used for help in
Windows. Either of these keys will generate the onhelp event.

Focus and Selection Events
The focus and selection events give you general information about how the user is interacting
with the document. These events are special in that they are notifying you of actions that do not
normally signal to an application that a response is required. You, however, might want to keep
track of every action the user is doing, so having access to these events could be quite useful to
you.

The first of these types of events are the focus events. Focus events are generated when a user
signifies to the application that they are interacting with a certain element on the page. This is
done by either clicking the element or navigating to it with the Tab key. This concept may
sound a bit abstract, so consider a real-world example. Go to the File, Open Menu command in
Internet Explorer. Now hit the Tab key a few times. Notice that a different control is high-
lighted each time you hit the Tab key. Each time you hit the Tab key, a different control
recieves the focus.

Selection events, on the other hand, are generated whenever the user drags the mouse over
elements on the HTML page. Whenever the user clicks and drags the mouse over a range of
elements in the page, selection events are generated. The sections that follow provide descrip-
tions of the focus and selection events.

onfocus The onfocus event is fired whenever an element receives the focus from the user.
This is done by the user either clicking the element or navigating to it via the Tab key.

onblur The onblur event is fired whenever an element loses the focus from the user. This
event is generated after the element loses focus via the user clicking another element or navi-
gating to another element with the Tab key.

Events

142 Chapter 7 Event Handling

http://www.quecorp.com

onselectstart The onselectstart event is fired when the user has indicated that he wants to
start a selection. This is done by the user clicking at the start of the section that they want to
select.

onselect The onselect event is fired whenever the user actually makes a selection. This is
done by the user holding down the mouse button and moving it over the elements that he
wants to select. The fact that the selection has been made is indicated by the select area ap-
pearing in reverse video. For instance, if normal text on the page is black on a white back-
ground, the text would change to white on a black background when selected.

ondragstart The ondragstart event notifies the script that the user is indicating that he wants
to move a selected area. This is done by the user pressing down with the mouse button on an
area that has been selected and moving the mouse.

State Change Events
State change events enable you to find out the current state of the document. The state of the
document reflects how far along the document is in loading. Because Internet connections
vary in connection speed, the amount of time it takes to load a document is not known ahead of
time. These events enable you to find out where the current document is in that process.

onreadystatechange The onreadystatechange event is fired whenever the document reaches a
milestone in its loading process. This enables the script to follow the document throughout its
entire loading and make decisions based upon that information.

When the onreadystatechange event is fired, the current state of the document can be accessed
via the readyState property of the document object. The readyState property can have the follow-
ing values:

■ complete—The document is completely loaded.

■ interactive—The document can be interacted with even though it is not fully loaded.

■ loading—The control is currently being loaded.

■ unitialized—The document is in the process of downloading.

onload The onload event is fired when the document has finished loading. This means that
not only has the HTML file for the current document been loaded, but all the elements on that
document have been loaded. This means that all elements that require their own connections
to the server (such as images and applets) must have finished loading.

onunload The onunload event is fired when the browser unloads the document. The docu-
ment is unloaded whenever the document that the user is viewing changes. This is done by the
user specifying that a new URL should be loaded into the browser. In addition, the onunload
event is fired when the refresh button is clicked, which reloads the document.

onabort Event
The onabort event is a special event used only with images (IMG elements). It is fired when
the loading of the images is stopped. The loading of an image can be stopped under two

143

7

II
Part

Ch

circumstances: if the user clicks the stop button in the browser, all images being loaded are
stopped; if the user clicks a link in a page before all images are loaded, the loading of those
images stops.

Event Firing
When an event is performed that your program is looking for, there has to be a process by
which your program is notified that the event has happened. This process is known as event
firing.

Event firing can be thought of as the bridge between the actions that are taking place and your
program. When an event happens, the browser takes note of whether the document is event
aware for any of the events, and if so, fires the appropriate response to the event to the docu-
ment. When an event is fired, the element that wants to receive that event has a procedure
called on it that has been bound to that event.

Consider a simple example: an image is receiving mouse click events. The first time that the
user clicks the image, an event is generated that informs the image that it has been clicked. It
is important to realize that an event is generated not only the first time that the user clicks the
image, but every time the user clicks the image.

You might, for instance, want to cause an element on your page to appear or disappear when-
ever an image is clicked. In effect, you are then making this image a button that interacts with
the user. Because you want to do something every time the image is clicked, it’s important that
you receive a new event every time the user clicks it.

Event Handlers
An event is fired after it has been generated by the browser. As mentioned previously, event
firing can be thought of as a bridge. The event handlers for the document are the other side of
that bridge. Event handlers are procedures written in a scripting language that are called when
events are fired.

The event handler is a user-defined procedure in your script that is called when events are fired.
It can be written in any language that can interface with and support the Internet Explorer 4.0
scripting mechanism. Normally, however, JavaScript or VBScript is used because they are built
into Internet Explorer 4.0.

Because events can be generated for all sorts of elements on the page, and even for the docu-
ment itself, event handlers are defined not in a general sense, but instead they are bound to the
element that will receive the event. If, for instance, you have an image that you want to receive
events, write an event handler for the actions you want performed and then bind that event to
the image element (binding is discussed in greater length in the section, “Binding to Events”).
If you want to implement the button scenario previously described, for instance, bind the
onclick event to the image that you want to respond when clicked.

Event Handlers

144 Chapter 7 Event Handling

http://www.quecorp.com

Figure 7.1 shows how events, event firing, and event handlers work.

FIG. 7.1
The event handling
process.

Figure 7.1 depicts an event that is generated, in this case, by the user clicking an image. The
browser then fires an event, notifying the document that an event has occurred. Finally, the
event handler for the image is called, letting the image know that it has been clicked.

Event Handling Prior to Dynamic HTML
The capability to interact with the user is not unique to Dynamic HTML. In fact, the capability
to do primitive event handling has existed since the introduction of JavaScript in Netscape
Navigator.

Because the methods that Dynamic HTML uses to do event handling are derived from
JavaScript, it would be advantageous to take a quick look at how JavaScript handles events.
Listing 7.1 displays the entire HTML and JavaScript code for this interaction. The code seg-
ments that follow are numbered corresponding to their placement within the final listing.

Prior to Dynamic HTML, the primary method for using and receiving events was to use them
with objects inside forms. The following example defines a simple form for this purpose:

11. <FORM NAME=”info”>
12. Name:
13. <INPUT TYPE=”text” name=”user” value=””>
14. <INPUT TYPE=”button” name=”show” value=”Click Here”>
16. </FORM>

This code defines a form that contains two objects: a text entry field and a button. Before the
advent of inline scripting languages, forms were used mainly for communicating information to
CGI scripts, which is, in fact, still a common use for them.

Beginning with JavaScript, however, you were able to use forms interactively without communi-
cating data back to the server. This is an important consideration, because communication on
the Internet (especially with a modem) can sometimes be quite slow.

Inline scripting languages enabled you to define event handlers for the objects inside forms,
and execute specific scripting code for those objects. This functionality enabled the page to be
interactive.

145

7

II
Part

Ch

The following example defines a function called in JavaScript “Greet” that opens an alert box
with a different greeting, depending on whether a name is passed to it:

19. function Greet(name)
20. {
21. if (name.length == 0)
22. alert(“Hello stranger”);
23. else
24. alert(“Hello “ + name);
25. }

The Greet(name) function is the event handler and is called whenever the interaction that you
are looking for is performed. In this case, the interaction you want is the user clicking the Click
Here button in your form, as defined in the previous code.

The way that events are bound to objects in a form in JavaScript is by adding the function call,
with its arguments, as an attribute to the GUI object. In this case, the GUI object is the Click
Here button, and the event that you want is the onclick event that is fired when the user clicks
the button.

Now bind the Greet(name) function to your form by adding the event handler function, onclick
to the button in the form definition:

11. <FORM NAME=”info”>
12. Name:
13. <INPUT TYPE=”text” name=”user” value=””>
14. <INPUT TYPE=”button” name=”show” value=”Click Here”
15. onclick=”Greet(document.info.user.value)”>
16. </FORM>

Now, when the Click Here button is clicked, the Greet(name) function is called. Note that the
value that is passed to the Greet(name) function depends on the value of another object in the
form, the text entry field with the name attribute of “user.” The events for the user field are also
not defined, because the only time you are interested in doing something special is when the
button is clicked. The final code for the interaction created in the three preceding excerpts,
ready to be executed in Internet Explorer, is displayed in listing 7.1. The output from this ex-
ample is shown in figure 7.2.

Listing 7.1 Recording User Input with Event Handling

01. <HTML>
02.
03. <HEAD>
04. <TITLE>
05. Chapter 7, Example 1
06. </TITLE>
07. </HEAD>
08.
09. <BODY>
10.
11. <FORM name=”info”>
12. Name:

Event Handlers

continues

146 Chapter 7 Event Handling

http://www.quecorp.com

13. <INPUT TYPE=”text” name=”user” value=””>
14. <INPUT TYPE=”button” name=”show” value=”Click Here”
15. onclick=”Greet(document.info.user.value)”>
16. </FORM>
17.
18. <SCRIPT language=”JavaScript”>
19. function Greet(name)
20. {
21. if (name.length == 0)
22. alert(“Hello stranger”);
23. else
24. alert(“Hello “ + name);
25. }
26. </SCRIPT>
27.
28. </BODY>
29. </HTML>

FIG. 7.2
Basic JavaScript event
handling.

Although this method of event handling is certainly powerful, and added quite a bit of client-
side scriptability to HTML forms, it is lacking in a fundamental way: it only works with forms.

Being limited to objects in forms originally made sense because forms contain elements that
are obviously part of a user interface. However, this limitation keeps the document from re-
sponding to more subtle events, such as the user moving the mouse over an image or a piece
of text. It is precisely this type of event handling that is now facilitated by Dynamic HTML.

Listing 7.1 Continued

147

7

II
Part

Ch

Event Handling in Dynamic HTML
Event handling in Dynamic HTML is done in much the same way as with previous versions of
HTML that supported inline scripting, but with many important extensions. Events can be
bound to any HTML element, or even to the document itself; there is also greater selection of
events is available.

You should consider several things when you use event handling in Dynamic HTML. The most
important aspect to consider is where you want the event information to go. You have many
options in this respect. You can have the event handled by the following components:

■ Element on which it occurs

■ Container that it resides in (for example, <DIV> or)

■ Body of the document (<BODY>)

■ HTML element (<HTML>)

■ Other places in the document Object

The element that receives the event depends on the design of your program and what you want
to achieve. The hierarchy in which events can occur is discussed later in the “Event Bubbling”
section, which should make these design decisions clearer.

For now, consider the first option: defining event handlers based on individual elements. In this
procedure, the most straightforward way to define an event handler is by including them via
inline attributes, through the following syntax:

<tagname event_type=”event_handler()”>

The “tagname” is the name of the tag you are using (for example, <H1>, <P>, , and so
on); “event type” is the kind of event that you are looking for; and “event_handler” is the func-
tion to call when that event occurs on the element.

Event Handling in Action
Listing 7.2 at the end of this section is a concrete example of setting up an event handler based
on individual elements. For starters, this example begins with a pretty basic <H1> tag:

<H1>Some Header Text</H1>

Here’s where the real power of event handling becomes apparent. Note that this element is not
in a form and doesn’t have an ID attribute to be uniquely identified on the page. It’s the same as
any other <H1> element you might have written in the past. But because you can add events on
an element by element basis, adding an event that doesn’t occur in a form is easy.

Event Handlers

148 Chapter 7 Event Handling

http://www.quecorp.com

The following code applies the boilerplate from the previous example to fire an event when the
user clicks on the element and to call the JavaScript hClicked() function when it is clicked with
the mouse:

11. <H1 onclick=”hClicked()”>Some Header Text</H1>

Pretty straightforward, isn’t it? The following code writes the JavaScript function to call when
the image is clicked. In this case, a popup alert box tells the user that the header has been
clicked:

13. function hClicked()
14. {
15. alert(“Header Text element clicked”);
16. }

Now every time the user clicks on the <H1> element with the mouse, the following sequence
occurs:

1. A mouse click event is generated.

2. The mouse click event is fired.

3. The browser checks to see if this event is being handled by the element that the mouse
is over.

4. Because the H1 element has an event handler, that function is called. In this case,
hClicked() is called.

5. The hClicked() function brings up an alert box informing the user that the element has
been clicked.

Take a look at this code in the context of a legal HTML document. Figure 7.3 shows the output
from this document when the user clicks on the <H1> tag.

Listing 7.2 Responding to User Interaction with Event Handling

01. <HTML>
02.
03. <HEAD>
04. <TITLE>
05. Chapter 7, Example 2
06. </TITLE>
07. </HEAD>
08.
09. <BODY>
10.
11. <H1 onclick=”hClicked()”>Some Header Text</H1>
12. <SCRIPT language=”JavaScript”>
13. function hClicked()
14. {
15. alert(“Header Text element clicked”);
16. }
17. </SCRIPT>
18.
19. </BODY>
20. </HTML>

149

7

II
Part

Ch

Compare the script in listing 7.2 to the script in listing 7.1 that performs a similar action with
methods prior to Dynamic HTML. You should take note of several things:

■ You didn’t have to use a form.

■ The element that has an event attached to it is not what is normally considered a user
interface element.

■ The syntax for binding the event is surprisingly similar.

The last point is perhaps the most important. Microsoft has taken great pains to make Dynamic
HTML as familiar as possible to frequent users of HTML.

Netscape had already defined a method for event handling for forms. When Microsoft decided
to add the capability for any element on the page to bind events on the tag itself, they chose to
use a standard, and a known way, to extend traditional event handling rather than coming up
with their own proprietary way to do things.

Binding to Events
Binding a function to an event is just the standard Dynamic HTML way of referring to the
process of assigning an event handler to a specific element for a specific event.

Although the method of binding event handlers to events on elements is quite natural, Dy-
namic HTML is actually quite flexible in the manner in which it enables you to bind events.

Binding to Events

FIG. 7.3
Event handling on
arbitrary HTML
elements.

150 Chapter 7 Event Handling

http://www.quecorp.com

Three ways to bind a function to an event are:

■ Through elements

■ Through the SCRIPT...FOR method

■ Through VBScript special syntax

These techniques are covered in the sections that follow.

Binding Events via Elements
You’ve already learned about the process of binding event handling procedures to an element
for a specific event in the “Event Handling in Action” section. All you need to do is assign the
name of the event handler via the attribute that is associated with the event.

Suppose, for instance, you had an image that you wanted to fire an event handler called
imgClick(), which is to be called whenever the mouse is clicked on the image. You would use
the following syntax to do this:

When would this type of event handling be useful? If you were building an online music cata-
log, for example, you might want special information to be displayed when the user clicks the
image of a CD.

What do you do, however, when you want to add more event handlers to an element? All you
need to do is add another attribute containing the name of the event and the function to be
called. Let’s add an event handler called imgUp() that is called when the mouse button is re-
leased over the image:

<IMG SRC=”image.gif” onclick=”imgClick()”
 onmousemove=”imgUp()”>

Binding Events via SCRIPT...FOR
Binding event handlers via element binding is the standard way to bind events. It also has
many advantages. First, element binding uses a simple syntax. Second, and in many ways more
importantly, it lets you see what events are bound to a specific element just by looking at the
element on the page.

Why, then, should there be alternate ways to bind events? This is because binding event han-
dlers via element binding is limited to languages that are built into the browser.

This may not seem important for most cases, and for simple Dynamic HTML it is not. If, how-
ever, you use Dynamic HTML to design world-class applications—as Microsoft has made clear
they see as the future of Dynamic HTML—you may want to have events bound to other lan-
guages, such as Java. Also, the computer language in vogue always seems to change, so it’s a
good idea to have a method of binding events that doesn’t make the assumption that either
JavaScript or VBScript is being used.

151

7

II
Part

Ch

Secondly, you can bind events to more than just HTML elements. In fact, if you remember the
definitions from the beginning of the chapter, you can bind events to the document itself. This
means that it is entirely possible that there might not be an HTML element to include the event
name attribute and the handler to call.

It is for these reasons that the SCRIPT...FOR method of assigning events was created. This
method enables events to be bound to page elements (and objects in the Dynamic HTML
Object Model hierarchy, such as the document object) separate from the section of the HTML
document where the code for handling these events is created. Start by using the previous
image example from the “Binding Events via Elements” section, but without defining any
events:

Now you want to assign an event handler to be called whenever the image is clicked, but you
face a dilemma. How do you refer to this page element from somewhere else in the HTML
document?

Obviously you need to have some way of assigning a name to the element. Such a method is
the ID attribute.

The ID attribute enables you to give individual identification names to each element. It’s quite
easy to use: just add “id=” and then the ID that you want to give to the element. For this ex-
ample, you want to give the tag an ID of “myImg,” and you can do so as follows:

You now have a way of referring to the element from anywhere on the page. Take a look at the
syntax for the SCRIPT...FOR binding method:

<SCRIPT FOR=id EVENT=”event_type” LANGUAGE=”language”
 // Code to be executed when the event
 // is fired.
</SCRIPT>

Three important attributes are being set here. The first is the FOR attribute, which specifies
the id of the element or object to which the event handler contained within the <SCRIPT>
paired tag is being bound. It is important to remember to use the id of the element here
(“myIMG”) and not the name of the tag ().

The second attribute being set is EVENT in which you specify the event to which you will be
binding to the event handler. Although the same information is being given, specifying the
event is a little trickier than using the binding to element method. With the EVENT attribute,
the name of the event is treated as if it were a function, rather than an attribute. This means
that when referring to the event in JavaScript, you should follow the name of the event with
parentheses, enclosing any arguments that the event may take. For instance, handling a mouse
click event using the SCRIPT...FOR method would be similar to:

<SCRIPT FOR=”some_element” EVENT=”onclick()” LANGUAGE=”JAVASCRIPT”>
//Code to handle the event
</SCRIPT>

Binding to Events

152 Chapter 7 Event Handling

http://www.quecorp.com

When specifying the the EVENT attribute it is important to note that JavaScript is case
sensitive. Therefore, you need to list the events in all lowercase, otherwise the event handler

will not be bound. VBScript does not have this limitation and you can capitalize however you want,
such as OnClick(), onClick(), and so forth. ■

The third attribute that you need to set is the LANGUAGE attribute. This attribute specifies the
name of the language that is being used with the event handler. In the case of Internet Explorer
4.0, the two scripting languages that will be used most often are JavaScript and VBScript.

The following code specifies the SCRIPT...FOR method of binding for the IMG that was de-
fined previously:

<SCRIPT FOR=myImg EVENT=”onclick()” LANGUAGE=”JavaScript”>
 // The same code that would have made up the function
 // imgClick() in the previous example of binding via
 // element.
</SCRIPT>

In general, it is probably a better idea to use the binding via element method over the
SCRIPT...FOR method. In those cases where it is necessary to use SCRIPT...FOR, however,
such as handling events in the document object that do not result from the user interacting
with elements on the page, you should include a comment that says the code is binding to an
element or object by its ID.

Binding Events via VBScript Special Syntax
Microsoft has done a good job throughout Dynamic HTML of making the procedures for doing
things as language neutral as possible. One exception, however, is the VBScript special syntax
for binding events. In addition to the standard methods of binding events, VBScript has a pro-
prietary method called the VBScript Special Syntax.

The VBScript Special Syntax is similar to the SCRIPT...FOR method of binding, except that it is
much simpler and not as much information needs to be supplied for it to handle an event.

The syntax is straightforward. You begin by specifying a SCRIPT block with a LANGUAGE
attribute specifying VBScript. You then write the VBScript subprocedure that you want to
define, using a special naming convention that binds the subprocedure to the element:

<SCRIPT LANGUAGE=”VBScript”
 Sub elementID_eventType()
 ‘ The code for the event handler '
 End Sub
</SCRIPT>

It is important to note the way in which the subprocedure has been named. The first part of the
name is the ID of the element for which you want to handle an event. Then comes an under-
score character “_”. Finally, the type of the event that you want to handle is listed, followed by
parentheses and any arguments that the event might take.

N O T E

153

7

II
Part

Ch

To clear this up, take a look at a concrete example. The following example replicates the event
binding of the last two examples (from “Binding Events via Elements” and “Binding Events via
SCRIPT...FOR”) with this new syntax:

<SCRIPT LANGUAGE=”VBScript”
 Sub myIMG_onclick()
 ‘ The code for the event handler, equivalent to
 ‘ the script “onClick()” from the previous examples
 End Sub
</SCRIPT>

Seeing this code by itself in a Dynamic HTML page can be quite confusing if you’re not aware
of this syntax. Why? Because using this syntax is not necessary to specify the name of the
event handler in either the element itself, or the SCRIPT element that surrounds the code.
Instead, the event is bound automatically just by its name. JavaScript programmers that are
used to binding explicitly may not be accustomed to automatic binding.

The special circumstance that is happening in VBScript special syntax is that by defining the
subprocedure inside your script with a special name, that subprocedure is automatically bound
to the event that corresponds to its name. How does this happen? The VBScript interpreter
checks for function names of the form and goes ahead and does the binding work for you when
the document is loaded.

The decision on whether to use the VBScript special syntax is an especially difficult one. It
is undeniably convenient; however, this method works only in VBScript, which goes against

the grain of the rest of the language-neutral Dynamic HTML philosophy.

The best advice is to follow your intuition. If you are a Visual Basic programmer, the
elementID_eventType() method of specifying events will seem quite natural to you. If, however, you are
not experienced with Visual Basic, it may take a little more time to understand the logic behind this
syntax. In any case, if you do decide to use VBScript-specific syntax, make a point of commenting it so
that other programmers, who may not be aware of the syntax, know what is going on. ■

window.event Object
When events are passed in Dynamic HTML, not much information is passed along with them.
For instance, the keypress event only informs you that a key has been pressed, but not the spe-
cific key that has been pressed.

Because this information is not passed directly, there has to be an alternative way of obtaining
it. This, and much more information, is made available via the event object, which is a child of
the window object in the Dynamic HTML Object Model that was discussed in the previous
chapter. The event object can be accessed as an object contained by the window object (that is,
window.event).

window.event Object

N O T E

154 Chapter 7 Event Handling

http://www.quecorp.com

The event object has many properties that are useful for event handling situations where more
information is needed. Many of the properties are useful only in certain situations. The keyCode
property, for instance, would probably not be useful when you receive a mouse click event.

Although certain properties of the window.event object are not pertinent to some events, the
window.event object is made available to all events. This is done to maintain consistency and to
make sure your generic even handler never expects an object that does not exist. The event
object consists of the following properties:

■ keyCode

■ altKey

■ ctrlKey

■ shiftKey

■ button

■ cancelBubble

■ fromElement

■ returnValue

■ srcElement

■ toElement

■ x

■ y

The following sections cover each of the event object’s properties in greater detail.

keyCode Property
Although it is nice to know that a key has been pressed via the keypress event, sometimes it is
important to know what key was pressed. The keyCode property gives you this information.

Suppose, for instance, that you were writing a game that took keyboard input. You might want
to have the game perform a different action depending on which key was pressed. The keyCode
property enables you to discern this information.

If a key has been pressed during an event, the keyCode property contains the value of that key
as an integer. This integer value is the key’s UNICODE keycode.

The values that are generated for keys vary from language to language. The codes for each
language and a further discussion of UNICODE is available at http://www.unicode.org.

altKey Property
When an event is generated, the browser checks to see if the Alt key has been pressed. This
information is then placed in the altKey property, which is a Boolean value set to true if the Alt
key was pressed and false if it was not.

155

7

II
Part

Ch

The altKey property can be used in a variety of ways. The first and most obvious way is to
detect if an Alt+Key combination was pressed by the user (that is, detecting if the user hit Alt
and X at the same time).

This property is also useful if you want to check to see if the Alt key has been pressed while
another type of event has occurred. You might, for instance, want to do one action if just the
mouse button is pushed, and another if the Alt key was being pressed when the mouse button
was clicked. The altKey property enables you to check for these actions.

ctrlKey Property
The ctrlKey property is similar to the altKey property. The ctrlKey property contains a Boolean
value that is true if the Ctrl key was held down during the event, or false if the Ctrl key was not
held down during the event.

shiftKey Property
The shiftKey property is similar to the altKey and ctrlKey properties. The shiftKey property
contains a Boolean value that is true if the Shift key was held down during the event, or false if
the Shift key was not held down during the event.

button Property
When you receive an event that in some way indicates that the mouse has been clicked
(onmousedown, onmouseup, and so on), you may know that a mouse button was clicked, but not
which mouse button.

The button property enables you to retrieve the information regarding what mouse button was
clicked. This is useful if you want to perform a different action, depending on which mouse
button was pressed.

Assume, for example, that you wanted to create a user interface control that causes information
to appear when the user clicks the left mouse button on the element and causes it to disappear
when the user clicks the right mouse button on the element. The button property enables you
to discern which button was pressed.

The button property contains a number that has one of four values that range from 0 to 3. The
meanings of the values are as follows:

■ 0—No mouse button was pressed

■ 1—Only the left mouse button was pressed

■ 2—Only the right mouse button was pressed

■ 3—Both mouse buttons were pressed

window.event Object

156 Chapter 7 Event Handling

http://www.quecorp.com

cancelBubble Property
All events in Dynamic HTML have the capability to “bubble” up through the element contain-
ment hierarchy until it finds an event handler. The cancelBubble property is a readable and
writable property that enables you to set or read whether the event will continue to bubble up.

Don’t worry about understanding what it means to “bubble” up through the containment hier-
archy at this point. Event bubbling is covered in detail later in this chapter. For now, just be
aware that events are not limited to the elements with which they occur.

fromElement Property
When moving the mouse pointer around over your window, the mouse pointer crosses over
many different elements. The standard property for specifying which element the mouse last
moved over before moving onto the one receiving the event is the fromElement property.

When a mouse-related event fires, you know that the mouse pointer has moved over the ele-
ment that received the event. You do not know, however, what element the mouse pointer was
last over before it moved over the element where it currently resides.

The fromElement property enables you to find out what element was passed over last by the
mouse pointer. The value of the fromElement property contains the last element passed over as
an element object (element objects are discussed in Chapter 6, “Dynamic HTML Object
Model”).

This property could be very useful in a wide variety of circumstances, most notably multimedia
applications and games. Whether or not you see an obvious use for it currently, make a point of
remembering the fromElement property because when it is needed, it will save you quite a bit
of work.

returnValue Property
Sometimes you may want to return a value from an event. This can easily be done in JavaScript
by assigning a return value to the event handler that you’ve defined. Then the caller of that
event handler can decide whether or not to use or ignore the value that is returned.

Return values are useful for changing the default actions for elements. By changing the
returnValue property to false for a HREF link, for example, the default action (going to the link
specified by the HREF) would not be executed.

Unfortunately, some languages do not enable event notification via procedural routines. This is
a problem, because Microsoft wants to keep Dynamic HTML as language neutral as possible.
The solution was to enable return values in a property.

The returnValue property is a writable property that enables your event handler to dynamically
set the value that is to be returned by setting the property. The returnValue property does not
expect a certain type of data because you could expect to return almost any type of information
to the returnValue property from your event handler.

157

7

II
Part

Ch

srcElement Property
Event bubbling was mentioned previously in the description of the cancelBubble property. The
srcElement property is also related to the bubbling of events throughout the containment hier-
archy. Event bubbling is covered in further detail later in this chapter.

The srcElement property contains an object that is the HTML element that first received the
event. For instance, the <BODY> may be getting this event. When the event handler for this
event checks to see what element the event started on, the element might be an buried
deep within it.

This means that you can write event handlers that are “generic.” You might want to hide any
element that is on the page if it is clicked, for instance. The event handler in the <BODY> can
use the srcElement property to find out what element was originally clicked and hide that ele-
ment.

toElement Property
The toElement property is similar to the fromElement property. When the mouseout event fires,
you know that the mouse pointer has left your element. You do not know, however, what ele-
ment the mouse pointer then entered.

The toElement property enables you to find out what the next element the mouse pointer
passed over is. The value of the toElement property contains that element as an element object.

You might use this property if you had an application where it was important to keep track of
all the elements over which the mouse pointer passed. The event handlers for each object
could then use the toElement property to communicate this information to each other.

x Property
When an event is fired, you may want to know what the current position of the mouse is at that
time. The x property lets you find out this information.

The x property contains the x-position of the mouse at the time the event fires. This coordinate
is calculated relative to the edge of the document and not relative to the edge of the screen.
This means that you can treat your document as the coordinate space you have to work on
without worrying where the browser is currently placed on the screen.

This property could be quite useful in a game program. You might want to move a ship to
wherever the mouse pointer has moved to, for instance. This property provides you with the
x-position where the mouse pointer currently resides.

y Property
Much like the x property, the y property lets you find out the y-position of the mouse at the
time the event fires. This coordinate is also calculated relative to the edge of the document
rather than relative the to the edge of the screen.

window.event Object

158 Chapter 7 Event Handling

http://www.quecorp.com

Much like the x property, the y property could be quite useful in a game program. You might
want to move a ship to wherever the mouse pointer has moved to, for instance. This property
provides you with the y-position where the mouse pointer currently resides.

Overriding Default Event Handling
The capability for your scripts to handle events on HTML objects is a relatively new capability
in web browsers, but event handling in general has been going on behind the scenes in brows-
ers since they were first developed.

A straightforward example of event handling going on in browsers is what happens when you
click an anchor (<A>) link in. The browser records that the user has clicked on the anchor
element, fires a mouse click event on that element, and then checks to see if it has a default
action to perform for a click on the anchor element. In the case of the <A> tag, the browser
knows to go to the URL specified by the tag.

You’ve already seen how you can use event handling to do this sort of thing with whatever
elements on your page that you want; however, Dynamic HTML also enables you to override
the default behavior of tags that have built-in event handling mechanisms.

Overriding default behavior is actually quite simple. It only requires that you make sure to do
two things:

Provide an event handler for the event that triggers the default behavior (for example,
onclick for clicking an anchor).

Set the window.event.returnValue to false.

By fulfilling these two requirements, the default action is cancelled, and whatever code you
place in the event handler is executed instead. The first requirement is pretty straightforward.
Because you are overriding the behavior for a certain action, it makes sense that you would
want to write an event handler for that event.

The second requirement is a little more subtle. To make the browser not perform the default
action for the element for that event, you have to inform the browser not to take the action, or
else it performs both actions. The signal to the browser to not perform the default behavior is
setting the returnValue property of the window.event object to false.

The following syntax uses this technique to disable the capability for a user to click an anchor
link:

<HTML>
<BODY>
<A id=myAnchor onclick=”aClicked()”
 HREF=”http://yourmachine.com”
 onclick=”aClicked()”>
Your Machine

159

7

II
Part

Ch

<SCRIPT LANGUAGE=”JavaScript”>
function aClicked() {
 window.event.returnValue = false;
}
</SCRIPT>
</BODY>
</HTML>

When this code is loaded into Internet Explorer, the anchor link looks like a normal link. It is
underlined (unless you’ve turned link underlining off), it uses the link colors, and so on. How-
ever, when you click it, it does nothing.

The important line to pay attention to in this example is:

window.event.returnValue = false;

This line sets the returnValue property of the window.event object to false. As mentioned previ-
ously, setting this to false causes the browser to forgo the default action it would have other-
wise taken, which in this case would have been to follow the link.

In this example you didn’t have the event handler do anything but cancel the default behavior.
You could, however, easily add additional code to the event handler to provide your own behav-
ior.

Providing at least some sort of event instead of the default action is probably a good idea, be-
cause users generally find it disconcerting if interface elements that they are accustomed to
functioning in a certain manner stop working. For instance, using the previous example, many
users would assume the browser had stopped working and restart it. Even if all you want to do
is disable the behavior, try to provide some sort of information (perhaps in an alert box, or in
the status bar) that mentions that this element has been disabled.

Overriding default actions for elements can create confusion, but it can also be quite powerful.
Suppose, for instance, that you were designing a kiosk application. You may want to only allow
links to be followed if the user has identified himself or if a password has been supplied. By
overriding default actions for an anchor link, you can check for this verification before allowing
the link to be followed.

Event Bubbling
So far, all the event handling covered has focused on receiving events for individual elements.
Most of the time, event handling individual elements is more than sufficient.

For those times when handling events for individual elements isn’t sufficient, Dynamic HTML
has the capability to bubble events up the HTML containment hierarchy. First, let’s define what
is meant by the containment hierarchy. The following HTML code is an example:

<HTML>
<BODY>
 <DIV id=myGroup>
 <H1>The Image</H1>

Event Bubbling

160 Chapter 7 Event Handling

http://www.quecorp.com

 </DIV>
</BODY>
</HTML>

The containment hierarchy is defined simply by what is contained within each other. If you
examine the preceding HTML code and pay attention to where tags begin and end, you’ll
notice that the <HTML> tag surrounds every other tag.

The next most inner tag, the <BODY> tag, surrounds the <DIV> tag. Finally, the <DIV> tag
surrounds the and the <H1> elements. This containment hierarchy is shown in fig-
ure 7.4.

FIG. 7.4
Examining event
bubbling.

Event bubbling is the process of traversing up this containment hierarchy, starting at the ele-
ment that receives the event. Suppose you click the <H1> tag in the example. The browser then
performs the following actions:

1. Checks to see if the <H1> element has an event handler for the onclick event type. If so,
executes it.

2. Checks to see if the <H1> element’s parent, the <DIV> element, has an event handler for
this event type. If so, executes it.

3. Checks to see if the <DIV> element’s parent, the <BODY> element, has an event handler
for this event type. If so, executes it.

4. Checks to see if the <BODY> element’s parent, the document object, has an event
handler for this event type. If so, executes it.

The judicious use of event bubbling can make your programming life much easier, because it
frees you from having to bind event handlers for every individual element.

Assume, for instance, that you want to have the JavaScript function doUpdate() called anytime
the or <H1> elements in the previous example are clicked. To do this without event
bubbling requires you to bind each of them as follows:

<h1 onclick=”doUpdate()”>The Image</h1>

161

7

II
Part

Ch

Because these two elements fall hierarchically within a <DIV> paired tag, however, and you
know that events bubble up the containment hierarchy, you can instead place the event binding
in the DIV tag as follows:

<div id=myGroup onclick=”doUpdate()”>
 <h1>The Image</h1>

</div>

Now, when the user clicks on the <H1> element or the element, the browser checks to
see if they have onclick event handlers. They do not.

However, next the browser checks to see if the parent of the <H1> and elements has
the event handler. It does, so the browser then executes the <DIV> element’s onclick handler to
handle the <H1> and element events. This provides the same behavior as binding to
each individual element, without using nearly as much code.

The savings in code and complexity in this example is relatively minimal. Event bubbling,
however, can be a huge time saver with an event-rich document. Imagine having several hun-
dred elements that you want to use similar event handlers for and having to assign event han-
dlers individually for all them.

Discovering Where the Event Bubbling Started
Because event bubbling traverses all the way up the hierarchy, quite a few event handlers may
end up being called. If you are writing an event handler for high up in the hierarchy, it may
sometimes be advantageous to know where the event bubbling started.

The window.event.srcElement property enables you to find out this information. When you
receive an event that has been bubbled, the srcElement property contains the HTML element
that first received the event before it started to bubble.

Canceling Event Bubbling
Dynamic HTML bubbles events to the top of the containment hierarchy by default, so even if
the event is handled at the element level, it still makes it all the way up to the document object.

This may sound confusing, so consider how event bubbling works in the initial event bubbling
example. The event handling always starts at the element where the event occurs, so if you
clicked the H1 element, it would fire an onclick event for the <H1> element. It would then fire
the onclick event for the <DIV> element that surrounds the <H1> element. What if you only
wanted the event to be delivered to the <H1> element and not to the <DIV> element? Canceling
event bubbling enables you to do this.

Normally, it makes sense to let Dynamic HTML use this default behavior. You may find an
instance, however, where you want to stop event bubbling at a specific point in the hierarchy.
Dynamic HTML enables you to do this with the window.event.cancelBubble property.

Event Bubbling

162 Chapter 7 Event Handling

http://www.quecorp.com

The proper way to use the cancelBubble property is to bind an event handler at the point in the
hierarchy that you want the event bubbling to stop. Then, in the event handler, set the
window.event.cancelBubble property to true.

The following syntax adds this behavior to the previous example, and causes the event bub-
bling to stop at the <DIV> element. First, here is the <DIV> element itself:

<DIV id=myGroup onclick=”doUpdate()”>
 <H1>The Image</H1>

</DIV>

Now you want to cancel bubbling in the doUpdate() function. This causes events to cease bub-
bling after the <DIV> element:

<HTML>
<BODY>
<SCRIPT LANGUAGE=”JavaScript”>

function doUpdate() {
 window.event.cancelBubble = true;
}

</SCRIPT>
<DIV id=myGroup onclick=”doUpdate()”>
 <H1>The Image</H1>

</DIV>

</BODY>
</HTML>

By canceling event bubbling in the <DIV> element, you are guaranteeing that the only event
handlers that will be called if a user clicks inside of the <DIV> element are the event handler
for the <DIV> and the event handler for any element that is nested inside of it. Therefore, you
can now write event handlers for the <BODY> element knowing that they will never be called
for the <DIV> element that has canceled event bubbling.

From Here…
The discussion on event handling in Dynamic HTML is the end of the Dynamic HTML founda-
tions section of this book. Although the material that has been presented in this chapter has
certainly been interesting, the truly exciting material is yet to come.

The next part, “Inside Dynamic HTML,” covers the truly dynamic portion of Dynamic HTML
by changing the style and content of the document on the fly. Like many topics, however, learn-
ing the foundations first will make learning the exciting material easier. The chapters in this
section consist of the following:

■ Chapter 8, “Dynamic Styles”—The dynamic styles chapter will show you how to change
the CSS style of any HTML element on the page on the fly.

163

7

II
Part

Ch

■ Chapter 9, “Layout and Positioning”—The layout and positioning chapter will give you
the capability to specify exactly where on the page you want elements to be placed.

■ Chapter 10, “Dynamic Content”—The dynamic content chapter will show how Dynamic
HTML can be used to actually change HTML elements and the contents of those HTML
elements on the fly.

From Here…

164 Chapter 7 Event Handling

http://www.quecorp.com

IIIP A R T

Inside Dynamic HTML

8 Dynamic Styles 167

9 Layout and Positioning 191

10 Dynamic Content 215

167

8

III
Part

Ch

W

8C H A P T E R

Changing Font Attributes

Dynamic HTML provides
mechanisms that enable you to
alter the attributes of the fonts
on your web page, including the
font family, font style, and font
color.

Hiding and Showing
Elements

Dynamic HTML enables you to
display or hide elements based
on layering and in conjunction
with mouse events.

CSS Positioning

By incorporating the Cascading
Style Sheets Positioning specifi-
cation, Dynamic HTML enables
absolute positioning, relative
positioning, and the capability to
specify many layout attributes,
including Z-indexing.

Dynamic Styles

ith a background in scripting (either JavaScript or
VBScript) and a familiarity with Cascading Style Sheets,
you are ready to begin using the features of Dynamic
HTML. It might seem that the previous chapters have
discussed many different technologies, but have side-
stepped addressing Dynamic HTML directly. That percep-
tion might be somewhat accurate; however, Dynamic
HTML is not just one technology. Without the Dynamic
HTML Object Model, event handling, scripting, and style
sheets, Dynamic HTML would not exist.

This chapter covers the implementation of the collection of
Dynamic HTML features known as dynamic styles. Dy-
namic styles are just as the name would imply, dynamically
changing the characteristics of style elements on the page,
as opposed to the characteristic changes provided by static
HTML.

Changing the style of fonts on a page, for example, is a
dynamic style. Of course, you can use Cascading Style
Sheets to change the style of a font on the web page; how-
ever, if you want to change the style of the font after the
page has loaded, you will need to make use of Dynamic
HTML. This chapter covers the basics of font manipula-
tion, hiding and showing elements, and positioning. Then
you will be ready to apply those skills to more advanced
concepts in later chapters. ■

168 Chapter 8 Dynamic Styles

http://www.quecorp.com

Changing Font Attributes
One of the simplest ways you can add dynamic content to your web pages is through the use of
Dynamic Fonts. You can use Dynamic Fonts to provide a host of different effects for your
pages, ranging from links that change color as you pass over them to fonts that switch styles or
grow in size as the mouse pointer passes over them. Follow along with this section and dis-
cover some of the basics of manipulating fonts by dynamically changing font attributes.

Changing Font Styles
Establishing a dynamic style starts with the style object. The font property belongs to the style
object and has the following values: size and face. The elements used in the examples in this
section inherit their properties in the following manner:

Style —> Font —> size, face

What does this mean in terms of specifying attributes? Well, in JavaScript you would use the
following syntax to specify the element that you are going to alter:

mytext.style.color

In this example, mytext corresponds to the ID of the element you were specifying, style refers to
the object, and color refers to the value.

The first task when changing an attribute is to define the new value in a JavaScript function, as
in the following:

function mytext_onmouseover() {
 mytext.face = “serif”;
}

This block of code specifies a function called “mytext_onmouseover()”, which sets the “face”
value for the “mytext” element equal to “serif ”.

The code used to produce the effect of flipping between a serif and sans-serif font as the mouse
passes over it is shown in listing 8.1.

Listing 8.1 Altering the Font Style Value with Dynamic HTML

01. <HTML>
02. <HEAD>
03. <TITLE>Changing the Font Family</TITLE>
04. </HEAD>
05.
06. <SCRIPT LANGUAGE=”JavaScript”>
07.
08. function mytext_onmouseover() {
09. mytext.style.fontFamily = “serif”;
10. }
11.

169

8

III
Part

Ch

12. function mytext_onmouseout() {
13. mytext.style.fontFamily = “sans-serif”;
14. }
15.
16. </SCRIPT>
17.
18. <DIV id=mytext style=”font-family: serif;font-size: 16pt”
19. onmouseover=”mytext_onmouseover()”
20. onmouseout=”mytext_onmouseout()”>
21. Flipping between serif and sans-serif faces.
22. </DIV>
23.
24. </BODY>
25. </HTML>

Figure 8.1 shows the results of the final Dynamic HTML code demonstrated in listing 8.1.

Changing Font Attributes

FIG. 8.1
Using Dynamic HTML to
alter the font-family
based on a mouse
event.

There is nothing particularly special about the appearance of the code, but what makes it differ-
ent and dynamic is that the Dynamic HTML Object Model exposes the element in the styles
used on the page, which means that style settings can be manipulated with a scripting lan-
guage. Two simple functions define the fontFamily value, one with onmouseover() and one with
onmouseout(). If you recall from Chapter 7, “Event Handling,” when mouse events used to
trigger the change are detected by the element, they call the functions specified by lines 8–14:

onmouseover=”mytext_onmouseover()”
onmouseout=”mytext_onmouseout()”>

Executing these functions changes the fontFamily value to produce the style change in the font
face that is possible with Dynamic HTML!

170 Chapter 8 Dynamic Styles

http://www.quecorp.com

Changing Font Sizes
Changing the font face can be a very useful tool for designers, enabling them to match the face
to a logo, for example. With dynamic styles, however, you can use a method similar to the one
used to alter font style to dynamically manipulate the font size of text elements on your pages.
This can be used to create “growing” or animated text, or highlight key words or phrases in a
document.

In the following listing, the JavaScript functions are used to manipulate the size property when
the mouse moves over and off the element, resulting in growing and shrinking text. The code
in listing 8.2 will produce the results shown in figure 8.2.

Listing 8.2 Altering the Font Size Value with Dynamic HTML

01. <HTML>
02. <HEAD>
03. <TITLE>Font SizeChanges</TITLE>
04. </HEAD>
05.
06. <SCRIPT LANGUAGE=”JavaScript”>
07.
08. function mytext_onmouseover() {
09. mytext.style.fontSize = “5”;
10. }
11.
12. function mytext_onmouseout() {
13. mytext.style.fontSize = “2”;
14. }
15. </SCRIPT>
16.
17. <DIV id=mytext STYLE=”font-size=2; color=blue;font-family=sans-serif”
18. onmouseover=”mytext_onmouseover();”
19. onmouseout=”mytext_onmouseout();”>
20. This is a Dynamic Size Change!
21. </DIV>
22.
23. </BODY>
24. </HTML>

In listing 8.2, the functions shown in lines 8–14 are used to alter the fontSize property defined
in line 17. These functions are called when the users pass their mouse pointer over the text on
the screen, causing the font size to increase as demonstrated in figure 8.2.

171

8

III
Part

Ch

Changing Font Colors
You can also change the color attribute using the same technique used for the style and size
attributes. Because color is also a value of the font property, it can be manipulated by JavaScript
as well. The benefit of this is that you can use the font color to accent areas of your pages and
links, or to draw attention to important words or phrases. The code in listing 8.3 results in text
that changes color with mouse events.

Listing 8.3 Manipulating Color Schemes with Dynamic HTML

01. <HTML>
02. <HEAD>
03. <TITLE>Color Changes</TITLE>
04. </HEAD>
05.
06. <SCRIPT LANGUAGE=”JavaScript”>
07.
08. function mytext_onmouseover() {
09. mytext.style.color = “red”;
10. }
11.
12. function mytext_onmouseout() {
13. mytext.style.color = “blue”;
14. }
15.
16. </SCRIPT>
17.
18. <H2 id=”mytext” style=”color: blue; font-family: sans-serif”
19. onmouseover=”mytext_onmouseover();”
20. onmouseout=”mytext_onmouseout();”>
21. This is a Dynamic Color Change!</H2>
22.
23.
24. </BODY>
25. </HTML>

Changing Font Attributes

FIG. 8.2
Using Dynamic HTML
to alter the size of
fonts.

172 Chapter 8 Dynamic Styles

http://www.quecorp.com

Figure 8.3 represents the output from listing 8.3. Although the figure is in black and white, you
can get the general idea.

FIG. 8.3
The color of the font
changes as the mouse
passes over the text.

The event handles in lines 19 and 20 in listing 8.3 are used to call the functions you have de-
fined to change the color of your font when the mouse passes over the text. The functions, as
defined in lines 8–14, then modify the color style property to achieve the effect of changing the
color of the text, as shown in figure 8.3.

As you can see, altering the properties and values of HTML elements with Dynamic HTML
does not have to be complicated; however, this does not mean that it cannot be powerful. In
fact, the capability to directly access objects on a page after load time is a very powerful fea-
ture. As you explore Dynamic HTML further in the ensuing chapters, you will learn that the
same techniques that enable you to change the color of fonts also enable you to use complex
ActiveX Multimedia Controls and incorporate live data into your site.

These text effects can be used to create some complex user interfaces, such as a dynamic table
of contents for a site. Other important techniques also exist that can be used with dynamic
styles, such as the capability to show and hide elements on the page. When combining dy-
namic styles with these text effects, you can create complex interfaces, such as expanding
outlines that feature color changes and other effects to highlight text.

Hiding and Showing Elements
The capability to selectively hide and reveal elements on your pages is an essential part of
Dynamic HTML. With the capability to selectively choose which site elements are revealed and
when they are revealed to your audience, you can create new user interfaces and user interac-
tions with your site that were not possible before Dynamic HTML.

173

8

III
Part

Ch

You could hide text elements on your page, and only reveal them when users passed their
mouse pointer over a specific area on the page, to create a “treasure hunt,” for example. Using
the same functionality, you could keep some resources more private.

More importantly, you could use this technique to hide information that wasn’t necessary to
the user and that cluttered the user interface. If you had a bulleted list, for example, and you
wanted to conserve space, only expanding the list with user interation, you could hide the
expanded text under normal circumstances. When users pass their mouse pointers over a point
they are interested in, the expanded text displays on the screen.

By selecting which elements the user has access to and when, you can create a whole user
experience that is dependent on how the information on your site is revealed. To accomplish
this Dynamic HTML makes use of the CSS Positioning property for “visibility” and enables you
to link the visibility of elements to mouse input from the user. This enables you to hide and
reveal elements on a page based on what the user is doing, a great way to build user interfaces
and interactivity!

Visibility
Hiding and showing elements with Dynamic HTML is a function of the visibility property. With
this property, you can specify whether or not an element is “visible” or “hidden.” If the element
is selected to be visible, it appears on the page with the other elements, and if it is hidden, the
element will not be drawn at all. Do not operate under the assumption that hiding elements
reduces your download time because hidden elements are still downloaded to the page; they
just have not been rendered to your screen. Until you perform some task that is designed to
change that attribute, the elements will remain hidden.

Revealing Information Based on Mouse Events
Hiding and showing elements is another straightforward feature of Dynamic HTML. Like other
specifications, what makes the feature special and dynamic is that objects can be set to visible
or hidden even after the page has loaded. In fact, the elements can be configured to alter their
styles based on user interaction.

Take a look at the following JavaScript function, for example:

function picture_onmouseover() {

 picture.style.visibility = “hidden”;
 }

This function specifies that if the mouse enters its element (picture), the element identified as
picture will have the visibility value set to hidden, causing it to disappear.

Although you might want to make objects and elements disappear on a timing control, a major-
ity of the time you will want to set the attribute based on mouse events, such as onmouseover(),
onmouseout(), onmouseclick(), and so on, just as you would with text effects, such as modifying
a font’s size and color.

Hiding and Showing Elements

174 Chapter 8 Dynamic Styles

http://www.quecorp.com

With this in mind, take a look at a page that draws some text and an image, and then hides the
image based on the onmouseover() event when the user passes the mouse pointer over the
text. The code for this interaction is shown in listing 8.4.

Listing 8.4 Hiding an Image Based on onmouseover() Events

01. <HTML>
02. <HEAD>
03. <TITLE>Color Changes</TITLE>
04. </HEAD>
05. <BODY>
06. <SCRIPT LANGUAGE=”JavaScript”>
07.
08. function picture_onmouseover() {
09. picture.style.visibility = “hidden”;
10. }
11.
12. function picture_onmouseout() {
13. picture.style.visibility = “visible”;
14. }
15.
16. </SCRIPT>
17.
18.
19. <DIV STYLE=”color=blue; font-family=sans-serif;”
20. onmouseover=”picture_onmouseover();”
21. onmouseout=”picture_onmouseout();”>
22. Pass over the text, and watch me disappear!
23. </DIV>
24. <P>
25.
26.
27. </BODY>
28. </HTML>

Figure 8.4 shows the end result of a user interacting with the appearing/disappearing image as
specified in listing 8.4.

As you can see, this code is similar to the code used to manipulate text with mouse events.
There are two JavaScript functions defined in lines 8–14 to hide and display the element in
question. The image in line 25 has the visibility property set to visible, and when the proper
mouse event is handled in lines 19–23, the appropriate images are shown or hidden by altering
the visibility property.

Designing a Hide and Display Peek-A-Boo Game
As you can see, hiding and showing elements is not a difficult task. The only difficult aspect is
coordinating the display of multiple images and such. To follow up on the concepts you’ve
learned so far, follow along with the design of a Dynamic HTML Peek-A-Boo game. In this
game, both images are displayed when the page loads, but as the user passes the mouse

175

8

III
Part

Ch

pointer over the first image, the second image disappears and vice versa. It is not a complicated
game, but it does deal with the issues of coordinating multiple elements, and it introduces a
new tag—the <DIV> tag.

Hiding and Showing Elements

FIG. 8.4
Hiding the picture
based on an
onmouseover() event
and the accompanying
text.

The <DIV> Tag This example introduces a new tag that can be used with CSS and Dynamic
HTML called the <DIV> (division) tag. This tag provides a mechanism for grouping style prop-
erties together for elements that might not have them in common, or for elements to which
you might want to apply JavaScript functions.

Here’s one way you might use the <DIV> tag:

<DIV id=example STYLE=”position:absolute; left:10%; top:30%; z-index: 1;
visibility:hidden; font-size: 7; color=green”>
What a great tag
</DIV>

In this example, the <DIV> tag specifies several properties that will be inherited by nested
elements, such as the text, if the style is inheritable. With the <DIV>’s ID attribute, you can use
scripting to manipulate the tag’s styles, which can be inherited by any nested elements, such as
text. Although the tag is commonly known as the division tag, it can be used to group elements
together so that properties can be applied to the elements as a group rather than as individual
elements. This can dramatically reduce the amount of scripting necessary to manipulate the
elements, and also provides you with a more convenient mechanism for specifying the ele-
ments that contain properties you want to manipulate.

Coding the Peek-A-Boo Game The Peek-A-Boo game consists of five parts: three nearly
identical JavaScript functions and two similar <DIV> tags.

176 Chapter 8 Dynamic Styles

http://www.quecorp.com

When the page first loads, both of the images are displayed normally, and they simply wait for
the user to pass the mouse pointer over one of the images. The code snippets from the final
listing that follow for listing 8.5 are numbered according to their placement within the final
syntax for the Peek-A-Boo game.

Each of the <DIV> tags specifies one of the “areas” on the page, which consists of a line of text
and an image:

31. <DIV onmouseover=”peek_onmouseover();”
32. onmouseout=”everyone_onmouseout();”>
33.
34. Peek-A-Boo!
35.
36. <P>
37.
38. </DIV>

This preceding syntax uses the <DIV> tag to treat both the line of text and the images in the
same way for mouse events. Grouping all the elements together into the paired <DIV> tag, and
then specifying the mouse event results for the <DIV> tag itself rather than for each separate
element, preserves a great deal of space and time.

In addition to the grouping of the elements, a series of three functions are created to perform
nearly identical tasks, as shown in the following syntax:

08. function peek_onmouseover() {
09.
10. mytext.style.visibility = “visible”;
11. picture.style.visibility = “visible”;
12. cattext.style.visibility = “hidden”;
13. kitty.style.visibility = “hidden”;
14. }

Each of the functions is designed to show or hide a combination of the images and text. The
first function, onmouseover(), is set to display the top image while hiding the bottom image
when the mouse pointer is over the elements. Another function, aboo_onmouseover() (appear-
ing in lines 23–28 in listing 8.5), reverses this procedure for the bottom image, completing the
“peek” and “boo” sections of the game.

If the mouse is not over either picture, however, all the images on the page should be dis-
played. Here, the elements can share one function, onmouseout(), that shows all the images
on the page:

16. function everyone_onmouseout() {
17. mytext.style.visibility = “visible”;
18. picture.style.visibility = “visible”;
19. cattext.style.visibility = “visible”;
20. kitty.style.visibility = “visible”;
21. }

That’s all there is to it! Listing 8.5 shows the code for the final assembled product.

177

8

III
Part

Ch

Listing 8.5 The Dynamic HTML for the Peek-A-Boo Page

01. <HTML>
02. <HEAD>
03. <TITLE>Peek-a-Boo</TITLE>
04. </HEAD>
05. <BODY>
06. <SCRIPT LANGUAGE=”JavaScript”>
07.
08. function peek_onmouseover() {
09.
10. mytext.style.visibility = “visible”;
11. picture.style.visibility = “visible”;
12. cattext.style.visibility = “hidden”;
13. kitty.style.visibility = “hidden”;
14. }
15.
16. function everyone_onmouseout() {
17. mytext.style.visibility = “visible”;
18. picture.style.visibility = “visible”;
19. cattext.style.visibility = “visible”;
20. kitty.style.visibility = “visible”;
21. }
22.
23. function aboo_onmouseover() {
24. mytext.style.visibility = “hidden”;
25. picture.style.visibility = “hidden”;
26. cattext.style.visibility = “visible”;
27. kitty.style.visibility = “visible”;
28. }
29. </SCRIPT>
30.
31. <DIV>
32.
33. Peek-A-Boo!
34.
35. <P>
36. <img id=picture src=”picture.gif” visibility="visible”
➥onmouseover=”peek_onmouseover();”>
37. onmouseout=”everyone_onmouseout();”
38. </DIV>
39.
40.
41. <DIV>
42.
43. I see you!
44.
45. <P>
46. <img id=kitty src=”kitty.gif” visibility="visible”
➥onmouseover=”aboo_onmouseover();”>
47. onmouseout=”everyone_onmouseout();”
48. </DIV>
49.
50. </BODY>
51. </HTML>

Hiding and Showing Elements

178 Chapter 8 Dynamic Styles

http://www.quecorp.com

Figure 8.5 shows the screen appearance for the Peek-A-Boo example described in this section.

FIG. 8.5
The Peek-A-Boo game
deals with hiding
multiple elements.

Collapsible Outlines
Now you can see how to use Dynamic HTML to manipulate HTML objects on the page by
using scripting languages and style sheet specifications. This is the power of Dynamic
HTML—the capability to alter objects on the page. This is really a result of the Dynamic HTML
Object Model, which exposes HTML elements so that they can be manipulated.

Now you have seen how you can change the style properties of various elements using script-
ing languages. You’ve seen how you can alter the font properties of an element, or how you can
show or hide elements based on user interaction. You should also be a little more familiar with
how you can use mouse events so that they control how your changes are implemented.

There are a number of different effects that you can create on your pages by combining these
techniques. One effect that you might feel has fantastic practical applications is a collapsible
outline.

The concept of a “collapsible” outline is probably one you are very familiar with already. For
example, Windows Explorer uses a variation of a collapsible outline to display the items on
your computer when you explore your hard drive.

As another example you could have a table of contents for your site that lists the areas on the
site, down to the individual pages as shown in figure 8.6.

179

8

III
Part

Ch

This type of outline view might be a useful navigation tool, but for large sites, it could quickly
become so large that its usefulness would be limited. One way to avoid this pitfall is to display
only the major headers on the page and hide the other information until the user clicks a
header of his or her choice. Using this setup, customers wouldn’t have to scroll through pages
that were indexed for Business Partners just to get to a customer service page. To follow up on
this scenario, take a look at what is involved in constructing a collapsible outline with Dynamic
HTML.

First, you will need to decide how you want your outline to function. You could make the ele-
ments expand as the mouse passes over elements, but that might be quite busy and confusing
for users. For purposes here, the following example uses the onclick and ondblclick events, so
that users can click an element to expand it, and double-click an element to hide it.

The following syntax contains the function that shows the elements when the user clicks a
header (the actual elements that call these functions will be shown later):

09. function showone() {
10. if (LevelOneItem.style.visibility=”hidden”)
11. LevelOneItem.style.visibility=”visible”;
12. }

The showone() function itself is very straightforward. It simply checks to see if the element is
already hidden, and if it is, displays the element by setting the visibility value to “visible.” To
hide the element, you can use the same function with the attributes reversed.

Next, you need to specify the text elements that are going to appear in the outline, name them,
and set the style attributes for how the text will appear. This is a perfect application for the
<DIV> tag because you want to combine several different properties so that you can treat them
as one single entity. The final code does more with less:

45. <DIV id=”LevelOneItem” STYLE=”visibility: hidden; margin:10px
➥font-family: sans-serif; font-size: 3" onclick=”showtwo()”
➥ondblclick=”hidetwo()”>
46. This is a first level item.</DIV>

Hiding and Showing Elements

FIG. 8.6
A typical web site table
of contents.

180 Chapter 8 Dynamic Styles

http://www.quecorp.com

This block of HTML establishes the ID for the Level One item (so you can refer to the ID
later), and then sets STYLE properties that will affect its appearance, such as the font styles
and the margin indent. You will also notice that it contains the two events onclick and ondblclick,
which are used to modify the next element. This is important because clicking the current
header reveals what is under it. Clicking one element, in this case a header, actually triggers a
change in the properties of the next element in our outline.

That’s really all there is to it—rinse-lather-repeat. You need to create the outline items and
repeat the show() and hide() functions for each outline item. The code used to produce a three
level sample outline is shown in listing 8.6.

Listing 8.6 A Collapsible Outline Example

01. <HTML>
02. <HEAD>
03. <TITLE>Outline Example</TITLE>
04. </HEAD>
05. <BODY>
06.
07. <SCRIPT LANGUAGE=”JavaScript”>
08.
09. function showone() {
10. if (LevelOneItem.style.visibility=”hidden”)
11. LevelOneItem.style.visibility=”visible”;
12. }
13.
14. function hideone() {
15. if (LevelOneItem.style.visibility=”visible”)
16. LevelOneItem.style.visibility=”hidden”;
17. }
18.
19. function showtwo() {
20. if (LevelTwoItem.style.visibility=”hidden”)
21. LevelTwoItem.style.visibility=”visible”;
22. }
23.
24. function hidetwo() {
25. if (LevelTwoItem.style.visibility=”visible”)
26. LevelTwoItem.style.visibility=”hidden”;
27. }
28.
29. function showthree() {
30. if (LevelThreeItem.style.visibility=”hidden”)
31. LevelThreeItem.style.visibility=”visible”;
32. }
33.
34. function hidethree() {
35. if (LevelThreeItem.style.visibility=”visible”)
36. LevelThreeItem.style.visibility=”hidden”;
37. }
38.
39. </SCRIPT>

181

8

III
Part

Ch

40.
41. <DIV id=”Title” onclick=”showone()” ondblclick=”hideone()”>
42. The Title Is Clickable
43. </DIV>
44.
45. <DIV id=”LevelOneItem” STYLE=”visibility: hidden; margin:10px"
➥onclick=”showtwo()” ondblclick=”hidetwo()”>
46. This is a first level item.
47.
48. <DIV id=”LevelTwoItem” STYLE=”visibility: hidden; margin:20"
➥onclick=”showthree()” ondblclick=”hidethree()”>
49.
50. This is a second level item.
51.
52.
53. <DIV id=”LevelThreeItem” STYLE=”visibility: hidden; list-style: disc”>
54.
55. This is a tiny little item
56.
57.
58. </DIV>
59. </DIV>
60. </DIV>
61.
62. </BODY>
63. </HTML>

Figure 8.7 represents the final output for this listing.

CSS Positioning

FIG. 8.7
Dynamic HTML can be
used to create text
effects such as
collapsible outlines.

CSS Positioning
Before you learn how to position and manipulate elements with Dynamic HTML, it is important
to understand the technology behind Cascading Style Sheets Positioning. This is the technol-
ogy that Dynamic HTML positioning and layout is based on; to position elements with Dynamic
HTML, you need to utilize it.

182 Chapter 8 Dynamic Styles

http://www.quecorp.com

If you recall from Chapter 4, “Cascading Style Sheets Primer,” the Cascading Style Sheets
specification enables you to change the style characteristics for HTML elements to provide
finer control over HTML page design. Dynamic HTML relies on CSS as the mechanism for
changing styles, but it also relies on CSS Positioning to control the layout of elements on your
web pages.

Cascading Style Sheets Positioning is not actually a portion of the original CSS specification.
This means that not all browsers that support CSS will support positioning, nor is positioning
bound to change if and when CSS does. CSS and CSS Positioning technologies are so closely
related, however, that it is not likely to cause you a great deal of trouble if you decide to use
CSS Positioning. How closely are the two related? Well, in previous examples in this chapter,
you learned how to use the visibility property, which as fate would have it, is part of the CSS
Positioning specification. So there you are, you were already using a CSS Positioning property
without having to learn a new syntax. The sections that follow provide information about the
intricacies of CSS Positioning and how to control the position of elements on your pages to
enhance your presentation.

Position
When your web page is rendered in a browser window, the browser reads the elements in
order and positions them in the window in the same order that they are specified in your docu-
ment. You can use the <P> and
 tags to force new paragraphs to control layout and flow, or
you can build complicated tables to try to create a layout. Neither of the solutions are very
eloquent, nor graceful. The Position element enables you to specify the location of elements on
your page, relative to the size of the browser window. There are three methods for establishing
position: static positioning, absolute positioning, and relative positioning. Because static posi-
tioning is the same method of positioning that browsers use to render straight HTML pages, it
won’t be discussed here. Absolute and relative positioning are the methods of positioning of
interest for the purposes of this chapter.

Absolute Positioning Absolute positioning enables you to define a “container” on your web
page into which you can place elements. Figure 8.8 shows how the page relates to the browser
window:

FIGURE 8.8
Absolute positioning
creates a container for
HTML elements.

183

8

III
Part

Ch

By creating a smaller container, or canvas, on the page, designers can control how elements
are established on the page. For example, listing 8.7 creates a column of text using absolute
positioning:

Listing 8.7 Creating a Column of Text with Absolute Positioning

01. <HTML>
02. <HEAD>
03. <TITLE>Positioning</TITLE>
04. </HEAD>
05. <BODY>
06.
07.
08. <DIV id=AbPosition STYLE=”position:absolute;left:10%;width:25%;top:10%”>
09.
10. This is a paragraph of text that has been formatted with absolute
➥positioning.
11. </DIV>
12. <P>
13. </BODY>
14. </HTML>

The previous example uses the STYLE property to establish “position:absolute”, which creates
a container for the objects placed within the <DIV> element. You will also notice some other
values: left, width, and top. These are the positioning values that specify where the container is
located on the page. In this case, the absolute container location is defined as inset from the top
and left, and only one fourth the width of the window. The result of this positioning example in
listing 8.7 is shown in figure 8.9.

CSS Positioning

FIG. 8.9
Absolute positioning
used to create columns
in layout.

184 Chapter 8 Dynamic Styles

http://www.quecorp.com

Relative Positioning Relative positioning works similar to absolute positioning. You still need
to define a style, and then create a container in which to place your elements. The key differ-
ence is that relative positioning enables you to move the container. That is, you create a posi-
tion container with “position:relative” and then define the size of the container.

One of the other key differences between absolute and relative positioning is that elements
defined with relative positioning can be altered with the scripting language. This enables the
animation or movement of elements on the page, simply by altering the Position element. This
type of animation is discussed more in Chapter 13, “Introducing Multimedia.”

Float The float property can be used to assign how an element attaches to the browser win-
dow. It could be considered analogous to aligning items left or right. In listing 8.8 for example,
the image and text are aligned to the right side of the browser using the float property:

Listing 8.8 Using the float Property to Determine Element Alignment

01. <HTML>
02. <HEAD>
03. <TITLE>Positioning</TITLE>
04. </HEAD>
05. <BODY>
06.
07. <DIV id=bouy STYLE=”float:right;left:10%;width:25%;top:10%”>
08.
09. This image and text are aligned to the right side of the browser with float
10. </DIV>
11. <P>
12.
13. </BODY>
14. </HTML>

The float property in listing 8.8 aligns the elements to the right side of the browser window, as
shown in figure 8.10.

Width and Height The width and height properties specify the size of the positioning con-
tainer with either absolute or relative positioning. You can use any of the accepted measure-
ment values, such as inches, millimeters, centimeters, or pixels. In addition to values, you can
specify percentages for the value. The percentages are always in relation to the browser win-
dow. So, “width: 50%; height: 75%” would create a position container that was half as wide as the
current window, and three fourths as tall.

185

8

III
Part

Ch

Listing 8.9 Defining Container Boundaries with the width and height
Properties

01. <HTML>
02. <HEAD>
03. <TITLE>Container Width and Height</TITLE>
04. </HEAD>
05. <BODY>
06.
07. <DIV id=AbPosition STYLE=”position: relative; width: 100px; height: 100px;
➥background-color: black”>
08. </DIV>
09. <P>
10. <DIV id=AbPosition STYLE=”position: relative; width: 50%; height: 50%;
➥background-color: red”>
11. </DIV>
12. <P>
13.
14. </BODY>
15. </HTML>

CSS Positioning

FIG. 8.10
Aligning elements to
the right using the float
property.

These properties are used to define the boundaries of the container, and then other elements
may be placed within the container boundaries. The code in listing 8.9 demonstrates how to
define the dimensions of the container.

186 Chapter 8 Dynamic Styles

http://www.quecorp.com

Figure 8.11 shows the output for listing 8.9.

FIG. 8.11
The width and height
properties enable you to
configure the dimen-
sions of a Position
container.

In line 7 in listing 8.9, width and height are used to create a container with dimensions of
100×100 pixels. The background is set to black so you can actually see the container. This
demonstrates how you can define containers using specific measurements. Line 10 defines the
dimensions of the container using percentages of the parent window. In this example, the con-
tainer is created with dimensions that are 50 percent of the window size, with a red background
to be able to see the container. Figure 8.11 shows both of the containers side by side to demon-
strate the differences in methods for defining Position container dimensions.

Top and Left Top and left specify the location of the container on the page. These two values
are used to indicate the starting position of the upper-left corner of the container, and are al-
ways in relation to the top- and left-hand side of the browser window.

For example, “left: 50px; top:35px” would begin a style container 35 pixels from the top of the
browser window, and 50 pixels from the window’s left side.

The code in listing 8.10 demonstrates how you can specify the “position” of a Position con-
tainer:

Listing 8.10 Positioning with the top and left Properties

01. <HTML>
02. <HEAD>
03. <TITLE>Positioning Containers</TITLE>
04. </HEAD>
05. <BODY>
06.

187

8

III
Part

Ch

CSS Positioning

07. <DIV id=AbPosition STYLE=”position: absolute; width: 100px; height: 100px;
➥top: 50px; left: 50px; background-color: black”>
08. </DIV>
09. <P>
10. <DIV id=AbPosition STYLE=”position: absolute; width: 100px; height: 100px;
➥top: 50%; left: 50%; background-color: red”>
11. </DIV>
12. <P>
13.
14. </BODY>
15. </HTML>

The results of listing 8.10 are displayed in figure 8.12.

FIG. 8.12
The top and left
properties enable you to
specify the location of a
Positioning container
with respect to the top
left corner of the parent
element.

Lines 7–8 in listing 8.10 create a Position container that is 100×100 pixels, and then the top and
left properties position the container 50 pixels from the top of the browser window, and 50
pixels from the left. Then, in lines 10–11 you take a similar container, but position it based on a
percentage of the window size (in this case, 50 percent of the size of the window).

Overflow
Of course, it is not always possible to predict how wide or tall a position container will need to
be when you are designing your page. Worse yet, the text may change, and a container that
was adequate may become too small. For situations like this, the overflow property can be used
to create a default for handling the extra information.

The overflow property accepts “clip” and “scroll” as values. The “clip” value will simply cut off
the extra information so that is not displayed. This could be used to crop an image, for example.

188 Chapter 8 Dynamic Styles

http://www.quecorp.com

For text, however, you will likely want to use the “scroll” value, which will enable the user to
scroll the content container to view all the information. The HTML code in listing 8.11 demon-
strates how the overflow property functions:

Listing 8.11 Handling Excess Text in the Container with the overflow
Property

01. <HTML>
02. <HEAD>
03. <TITLE>Overflow</TITLE>
04. </HEAD>
05. <BODY>
06.
07. <DIV id=ScrollIt STYLE=”position: absolute; width: 100px; height: 100px;
➥top: 25px; left: 25px; overflow: scroll”>
08. This is some text that will appear in the container you have defined.
09. Because it won’t fit, it will be overflowed. This example is scrolled.
10. </DIV>
11. <P>
12.
13. </BODY>
14. </HTML>

Figure 8.13 displays the results of listing 8.11.

FIG. 8.13
The overflow property
enables you to specify
how a container should
deal with data that will
not fit in the defined
area.

Line 7 in listing 8.11 creates a container that is 100×100 pixels. However, the text that we are
placing in the container is obviously going to be larger than 100×100 pixels. So at the end of
line 7, the overflow property is used to specify that the container should have scroll bars that
can be used to view all the data.

189

8

III
Part

Ch

From Here…

Z-Index
Z-index refers to the order in which elements are placed “on top” of one another, or in layers.
The name derives from the Cartesian coordinate system (X,Y,Z), where Z refers to the axis that
controls depth. Positioning enables the creation of layers by assigning a Z-index number to
elements that determine their effective layer on the page.

This layering capability enables designers to specify how elements are to overlap, which can be
used to create a variety of text effects, or to blend elements together. Z-indexing is discussed in
greater detail in Chapter 9, “Layout and Positioning.”

From Here…
This part of the book concentrates on the effects that Dynamic HTML can provide for the
visual enhancement of your pages, and how to use these techniques to create new user inter-
faces and multimedia effects.

Now that you have seen some of the basic dynamic styles and effects that can be created by
combining scripting and style sheets, you should be aware of how the Dynamic HTML Object
Model is responsible for much of this functionality. These effects might be simple, but as you
will see in later chapters, they will serve as the basis for more complex examples of how you
can use Dynamic HTML to enhance your web presence. These techniques are covered in
detail in the remaining chapters of this part of the book:

■ Chapter 9, “Layout and Positioning”—This chapter discusses and demonstrates the
importance of dynamic design through absolute positioning, relative positioning, the
STYLE properties, and layering.

■ Chapter 10, “Dynamic Content”—This chapter introduces the intricacies and usefulness
of changing web page content at runtime, the dynamic capabilities provided by
TextRange objects, as well as the Structured Object Model.

190 Chapter 8 Dynamic Styles

http://www.quecorp.com

191

9

III
Part

Ch

D

9C H A P T E R

Layout and Positioning CSS Positioning

The CSS Positioning working draft
from the W3C is the foundation of
positioning elements with Dynamic
HTML.

Absolute Positioning

Absolute positioning enables de-
signers to position elements on web
pages, using a coordinate system.

Relative Positioning

Relative positioning enables design-
ers to position elements on a page
in relation to one another, or in
relation to the default HTML posi-
tioning called static positioning.

CSS Properties

The CSS Positioning properties: to
provide the means to specify coordi-
nates, to handle overflow of data
when a positioning container is too
small, to layer elements, and to show
and hide elements.

Layers

CSS Positioning and Dynamic
HTML support layers through the
Z-index property.

Layer Animations

Combining layers, positioning
properties, and a scripting language
you can create multimedia and
interactive interfaces with CSS
Positioning and Dynamic HTML.

ynamic styles represent the first steps toward building
new interfaces and designs with Dynamic HTML. One of
the strongest aspects of this capability is the control pro-
vided by layout and positioning—an area that was long
ignored in the early incarnations of web browsers that has
since received a great deal of attention.

Chapter 8, “Dynamic Styles,” provided you with a basic
overview of positioning because it is a part of dynamic
styles. Positioning and layout, however, are significant
enough to warrant an entire chapter devoted to their
coverage.

The layout and positioning mechanism utilized by Dy-
namic HTML is a combination of Cascading Style Sheets
Positioning and JavaScript/VBScript. The combination of
these two technologies provides you with the capability to
create pages that have adaptable layout, provides a great
deal of flexibility in positioning elements, and enables you
to control element position after the page has loaded.
Dynamic HTML does this by taking advantage of Cascad-
ing Style Sheets Positioning and the position property,
which enables absolute and relative positioning of HTML
objects. ■

192 Chapter 9 Layout and Positioning

http://www.quecorp.com

CSS Positioning
Cascading Style Sheets Positioning is a mechanism for providing information about the loca-
tion of elements on a page, either in relation to the overall browser window or in relation to
other objects on the page.

The CSS Positioning specification is not actually a part of the Cascading Style Sheets specifica-
tion, and therefore is subject to changes separate from CSS. For the most part, however, the
CSS skills you’ve acquired from Chapter 4, “Cascading Style Sheets Primer,” are applicable to
CSS Positioning.

Absolute and relative positioning are actually types of positioning that can be implemented
through the CSS Positioning position property. Each type of positioning offers different advan-
tages, depending on the type of layout and elements with which you are working. As you con-
tinue to look at how Dynamic HTML uses positioning, those advantages will become more
apparent.

Position Property
The capability to create diverse layouts with Dynamic HTML depends on the capability to
describe to the browser where an element should be placed on a page. After an element has
been placed on the page, there are mechanisms by which you can specify how the element
should interact with other elements, such as the layering of elements.

When a browser parses the HTML that describes a page, the elements are laid out in the order
they are read from the file. The beginning of an HTML file corresponds to the top of a com-
pleted web page, so as items are read sequentially from the beginning to the end of the file, the
items are placed from the top to the bottom of the web page. This default positioning mecha-
nism used by all browsers from Lynx to IE to Netscape is known as static positioning. Figure
9.1 demonstrates this default layout mechanism.

FIG. 9.1
The default layout mecha-
nism for HTML, static
positioning, results in a
sequential layout of
elements.

193

9

III
Part

Ch

Unfortunately, static positioning found in browsers is quite limited. Without using tricks such
as spacers or tables, it is nearly impossible to align elements properly, such as a caption with a
photo, for example. It is also difficult to create any sort of columnar layout. Additionally, the
elements cannot be layered, or provide for overlapping elements, leaving many layout styles
and techniques out of reach for web designers.

To address these problems, CSS Positioning utilizes two additional types of positioning: abso-
lute positioning and relative positioning. Whenever you refer to absolute and relative position-
ing in Dynamic HTML, you are really talking about CSS Positioning. Dynamic HTML makes
the STYLE position property available for scripting via the Dynamic HTML Object Model, and
uses absolute positioning and relative positioning for layout and position control.

Absolute Positioning
The first type of CSS Positioning discussed here is known as absolute positioning. Just as the
name would imply, the special feature of absolute positioning is the capability to explicitly
specify where layout elements will go on a page by using a coordinate system that is based on
the top-left corner of the browser window (or the parent element).

Coordinates for absolute positioning are always given with respect to the top-left corner of
the parent element, which is usually the browser window. The X axis continues along the top

of the parent element, for example, across the width of the browser window. What, however, would
normally be thought of as the Y axis, actually continues “down: the element”, for example, toward the
bottom of the browser window. ■

The location of absolutely positioned elements remains constant, even if elements overlap with
other elements, or if users resize their browser windows. The result is a number of new ways
in which layouts can be created by placing elements on a page in precise locations.

You could use absolute positioning to overlap objects by placing them so that they would al-
ways have a portion of their areas shared, for example. You could also use absolute positioning
to place a caption with an image, to make sure that the two elements are always rendered to-
gether. Suppose you want to have some text always appear next to a photo. Listing 9.1 shows
how the positioning would work:

Listing 9.1 Aligning Images and Captions with Absolute Positioning

01. <HTML>
02. <HEAD>
03. <TITLE>Absolute Positioning</TITLE>
04. </HEAD>
05. <BODY>
06. <P>
07.
08. This page is formatted with absolute positioning, which places the
➥elements at specifically specified points on the page.
09.

N O T E

continues

Position Property

194 Chapter 9 Layout and Positioning

http://www.quecorp.com

Listing 9.1 Continued

FIG. 9.2
Absolute positioning
enables designers to
place elements at
specific points on a
page.

10. <DIV id=”AbPosImage” STYLE=”position: absolute; left: 50px; top:150px”>
11.
12. </DIV>
13.
14.
15. <DIV id=”AbPosText” STYLE=”position: absolute; left: 250px; top:150px;
➥width: 2in; color: blue”>
16. Note how the second text block has been positioned beside the picture,
➥regardless of the window size.
17. </DIV>
18.
19. </BODY>
20. </HTML>

As you can see from line 10 in listing 9.1 using a new STYLE property called position with a
value of “absolute” denotes that this element will be placed using absolute positioning.

In the same line, the location of the element on the page is given using the left and top STYLE
properties. These properties accept values in pixels, centimeters, inches, points, and so on to
place the element at a certain point on the page. These properties are discussed in more detail
later. Figure 9.2 shows how the image is placed 50 pixels from the left side of the browser
window, and 150 pixels from the top. Line 15 defines the values for the text then places the text
next to the image, again using the top and left properties. The result of the code is that the text
is always placed by the image, and both elements always remain in the same position, regard-
less of the size of the browser window.

195

9

III
Part

Ch

When the viewer is looking at this page, the image and the caption will always appear in exactly
the same location, even if the viewer resizes the browser window. Also, you can change the
position of the picture by changing the “top” and “left” property values, and nothing will happen
to the location of the caption. With absolute positioning, each element is positioned explicitly
and independently of the other elements.

Upon further examination of line 15 in listing 9.1, you will discover another property that is
being used for the caption— “width.” This property can be used to define how wide an element
that is positioned absolutely can be. The result for listing 9.1 is that the width of the caption is
limited to 2 inches. Upon breaching this 2-inch width limit, the text wraps to the next line.

Here are some other items to note about absolutely positioned elements:

■ Rectangular flow area—Absolute positioning defines a rectangular flow area for the
specified element that begins on the page at the top-left coordinates you specify. This
flow area is also sometimes referred to as a positioning container.

■ Height and width specification—The height and width properties can be used to
define the total area of the flow rectangle. This gives you even greater control over the
space an element occupies. For example:

 #mystyle {position: absolute;top: 1in;left: 1in; height: 3in; width:
 ➥5in}

This code defines a flow rectangle that is placed one inch from the top and left-hand
sides of the browser window and extends down the page 3 inches, and to the right 5
inches.

■ Elements can be nested—If an element is positioned using the mystyle definition used
in the preceding example, another absolutely positioned element could be nested within
the element. For example:

 <DIV id=”mystyle”>

 Some Text

 </DIV>

This code could be used to place the words “Some Text” 50 pixels in from the top and
bottom of the 3×5 area already specified in mystyle.

■ Positioning inside other elements by top and left—Absolute positioned flow areas
are always defined by the starting point from the top and left of the parent element,
whether that parent is the browser window or another absolutely positioned element in
which the new element is nested.

By exploiting these features of absolute positioning, it is possible to create some interesting
layouts, and make sure that they are seen exactly as you want them to be.

Position Property

196 Chapter 9 Layout and Positioning

http://www.quecorp.com

Listing 9.2 incorporates some of the absolute positioning features to create an interesting lay-
out. The output for this code is displayed in figure 9.3, which follows this listing:

Listing 9.2 Creating a Tight Layout with Overlapping Effects Through Use of
Absolute Positioning

01. <HTML>
02. <HEAD>
03. <TITLE>Absolute Positioning Example</TITLE>
04. </HEAD>
05. <BODY>
06. <P>
07. <DIV id=”Element1" STYLE=”position: absolute; color: red; top: 2in; left
➥2in”>
08. <H1>Absolute Positioning!</H1>
09. <SPAN STYLE=”position: absolute; color: blue; top: 30px; left: 25px; width:
➥2in”>This text is a nested element. Note that it is positioned within the
➥flow area defined by the DIV tag.
10. </DIV>
11.
12. <DIV id=”Element2" STYLE=”position: absolute; top:15px; left:25px”>
13.
14. </DIV>
15.
16.
17. <H2>Overlaping Text With Absolute Positioning</H2>
18.
19.
20. </BODY>
21. </HTML>

FIG. 9.3
An example layout with
overlaps and nested
elements using absolute
positioning.

197

9

III
Part

Ch

The code in listing 9.2 and the resulting output (refer to figure 9.3) demonstrate how elements
can be positioned in the same space to create overlapping effects, and also how you can nest
absolutely positioned objects for tighter layout control. First, in line 7, a flow area is created
using the <DIV> tag and absolute positioning. This creates an area where we can actually posi-
tion other nested elements, such as the <H1> and the tags that follow in lines 8 and 9.
Finally, the image is placed on the page in line 12, and then line 16 places the text that overlaps
the image.

Absolute positioning is best suited for placing elements on a page and leaving them there. After
elements are positioned with absolute positioning, they do not move, regardless of page
changes. Suppose you want to take advantage of CSS Positioning to animate page elements?
This is where relative positioning is important.

Relative Positioning
Relative positioning is a hybrid between static positioning and absolute positioning. Like static
positioning, elements positioned with relative positioning are flowed onto the page in the order
in which they are parsed from the HTML file. This enables you to create pages in a more con-
ventional way, without having to position each item explicitly.

In addition, relative positioning affords you the capability to specify the position of an element.
For example,

<BODY>
This text would be positioned statically.
</BODY>

and

This text is just like static
➥text.

are functionally equivalent. They will both place the text on the page in the same manner.

Using relative positioning offers some distinct advantages. Relative positioning enables you to
specifically place elements on the page similar to absolute positioning. In addition, relative
positioning enables you to place elements on the page relative to their parent elements. The
advantages of relative positioning can also be found in the capability to treat relative positioned
elements as objects, assigning them to layers with Z-indexing. Additionally, you can move
relatively positioned elements with a scripting language, such as JavaScript or VBScript. Script-
ing relatively positioned objects will come into play in Chapter 13, “Introducing Multimedia.”

Listing 9.3 shows an example of a layout put together through the use of relative positioning.
The output for this listing is displayed in figure 9.4, which immediately follows this listing:

Listing 9.3 Laying Out a Page Using Relative Positioning

01. <HTML>
02. <HEAD>

Position Property

continues

198 Chapter 9 Layout and Positioning

http://www.quecorp.com

Listing 9.3 Continued

03. <TITLE>Relative Positioning</TITLE>
04. </HEAD>
05. <BODY>
06. <P>
07.
08. This page is formatted with relative positioning, which allows the
➥layout to flow naturally, while still affording some control.
09.
10. <DIV id=”RelPosImage” STYLE=”position: relative”>
11.
12. </DIV>
13.
14. <DIV id=”RelPosText” STYLE=”position: relative; width: 2in; color: blue”>
15. Note the formatting that is applied to the ‘caption’ text below the image.
16. </DIV>
17.
18. </BODY>
19. </HTML>

FIG. 9.4
Relative positioning
flows elements like
static positioning, but
allows greater control.

In the preceding example, lines 10 and 14 each define an element that is positioned on the page
using relative positioning. When looking at the final page, it is laid out identically to the way it
would be if positioning were not used at all. However, by using positioning for the object, you
could now add a script to the page that would alter the position of the objects—something that
is not possible with static positioning.

The sections that follow examine the mechanics of positioning elements on the page, and the
attributes that can be tweaked to develop complex layouts.

199

9

III
Part

Ch

position Property
The STYLE position property determines the type of positioning used by the browser to place
an element. The default position value is static, which is the default for HTML. The position
property is defined with the STYLE attribute, and uses the familiar CSS syntax:

 <SOME_ELEMENT STYLE=”position: value”>

The values that are accepted are “absolute,” “relative,” and “static” as shown in the following lines:

 <DIV STYLE=”position: absolute”>I’m Absolute</DIV>
 <DIV STYLE=”position: relative”>I’m Relative</DIV>
 <DIV STYLE=”position: static”>I’m Static</DIV>

The static value for the position property is the default, and so it is not generally necessary
to specify static positioning. ■

That is all there is to defining the type of positioning that is used by an element; however, you
might have noticed some other properties used in the previous examples that are used to de-
fine where the elements are positioned.

left and top Properties
The left and top properties define where the placement of a positioned element begins. If you
think of the browser window as a giant grid, then you need to be able to place an element on
that grid by using some sort of coordinate system.

The left and top properties both accept three kinds of values:

■ length—This is a unit of measurement, such as pixels (px) or inches (in), which are
used to place the “top” of the element being positioned. Using a length can yield very
precise control over element placement. The units of measurement can be found in table
4.2 in Chapter 4.

■ percentage—This is a percentage that will result in the placement of the element in
relation to the size of the parent element.

If, for example, the parent element is the browser window (which it is most of the time),
then a top value of “50%” would place the element halfway down the page. Another
example could be a flow area (position container) that is 500×500 pixels. A value of 50% in
this case would place the child element at 250 pixels, within the 500×500 flow area.

■ auto—The auto value simply places the element where it would naturally fall if the page
were being flowed in without positioning.

So, by determining the top and left coordinates, any element can be placed anywhere in the
browser window; however, how absolute positioning and relative positioning determine the
origin of the coordinates is different.

For absolute positioning, the origin of the top and left coordinates are in relation to the parent
object. That is, if an item is placed within a browser window, then the top and left coordinates

N O T E

left and top Properties

200 Chapter 9 Layout and Positioning

http://www.quecorp.com

start from the top-left corner of the browser window. In fact, most of the time absolutely posi-
tioned elements will be in relation to the browser window; however, they can be nested inside
other elements. It is also important to note that if absolutely positioned elements are placed
with measurements, such as inches or pixels, then their position will not change if the browser
window is resized. This can be used to make sure that the layout remains consistent propor-
tionally by retaining the position of all the elements, regardless of the size to which the user
sets the window. If you had a page that was a scale diagram, for example, you would not want
the scale to change if the user resized the window.

Relative positioning functions slightly differently from absolute positioning. The origin for relative
positioning is the default location of the element, which means that the top and left starting points
begin with respect to where the element would be placed if it was flowed with no positioning. So
relative positioning flows the page elements just like a normal, static-positioned page, with each
element having a natural position based on how it is parsed from the HTML file. When an ele-
ment is positioned with relative positioning, all the coordinates are given in relation to this natural
position. Some other special characteristics of relative positioning are:

■ When an element that is placed with relative positioning is moved, it will retain all the
formatting characteristics, such as color or font-style, from its original position.

■ When a relatively positioned element is moved, any child elements or elements posi-
tioned relative to it will also move.

■ When a relatively positioned element is moved, the space in which it was originally
rendered will not be cleared. Because of this, you will need to be conscious of layers and
placement when animating relatively positioned elements.

The following code in listing 9.4 provides an example of how the different types of positioning
are rendered when elements are placed by using top and left. Figure 9.5 shows the output for
this code.

Listing 9.4 Rendering top and left Values with Absolute and Relative
Positioning
01. <HTML>
02. <HEAD>
03. <TITLE>Positioning Examples</TITLE>
04. </HEAD>
05. <BODY>
06. <P>
07. This text is placed using static positioning.
08. <P>
09.
10. <DIV id=”AB” STYLE=”position: absolute; top: 50px; left: 50px; color: red”>
11. This text is placed using absolute positioning.</DIV>
12.
13. <DIV id=”REL” STYLE=”position: relative; top: 50px; left: 50px; color:
➥blue”>
14. This text is placed using relative positioning.</DIV>
15.
16. </BODY>
17. </HTML>

201

9

III
Part

Ch

Listing 9.4 contains three text elements that are statically, absolutely, and relatively positioned.
If you look closely at lines 10 and 13, you will note that the coordinates for placing the absolute
and relative elements are exactly the same: top:50; left:50;. If you load the page, however, you
will see that the elements are not rendered on top of each other, but are offset slightly instead.

In listing 9.4, the static line of text on line 7 is rendered normally at the top of the page. Next,
the absolutely positioned element on lines 10 and 11 is rendered 50 pixels from the top of the
window, and 50 pixels from the left side of the window. The same coordinates were used for the
relative positioned element on lines 13 and 14.

Instead of being positioned in relation to the window, the relatively positioned element is
aligned in relation to where the text would have been flowed automatically (as with static posi-
tioning). If the text were not positioned at all, it would have been placed along the left side of
the window, underneath the absolutely positioned text. So the 50-pixel offset starts on near the
left side, and below the absolutely positioned text, resulting in an even greater offset.

width and height Properties
In addition to being able to specify the position of elements, you can also specify the area that
elements can occupy. If you think of positioning as creating a rectangular container for HTML
elements, then the top and the left properties define where the rectangle starts. But how do you
determine how big the rectangle is? By using the width and height properties.

The width property defines how wide the positioning container will be, and the height property
determines how tall it will be. Keep in mind, however, that because you define the “top” of the
rectangular container with positioning, the height property actually determines how far down
the page your positioning container will extend.

Both of these properties can accept units of measurement or percentages as values. This en-
ables you to define an area that is always a predefined size, or a size that changes with respect
to the browser window. By using the width and height properties in combination, you can use

FIG. 9.5
Three elements with
similar definitions
placed with static,
absolute, and relative
positioning.

width and height Properties

202 Chapter 9 Layout and Positioning

http://www.quecorp.com

positioning to create effects such as columns as demonstrated in listing 9.5 and its complemen-
tary figure (9.6).

Listing 9.5 Creating a Columnar Layout with width and height Properties

01. <HTML>
02. <HEAD>
03. <TITLE>Column Text</TITLE>
04. </HEAD>
05. <BODY>
06. <P>
07.
08. <DIV id=”REL” STYLE=”position: relative;
➥ top: 50px; left: 50px; width: 2in; color: blue”>
09. This text is placed using relative positioning, but makes use of the
➥width tag to force the text into a 2 inch column. This effect can be
➥used to create columnar layouts or for greater control over the
➥page appearance</DIV>
10.
11. </BODY>
12. </HTML>

FIG. 9.6
You can use the width
property to create
columns.

In this example on line 8, the width property defines a rectangle that has a width of 2 inches, so
when text is inserted into the <DIV> tag, the result is a column of text.

This flexibility enables you to create some pretty complex layouts based on grids or columns;
however, some important things to keep in mind are:

■ The formatting defined in relative-positioned elements is retained when moving the
elements. So, when you move a 2-inch column, it will remain a 2-inch column, complete
with line breaks.

■ Positioned containers defined with the top, left, height, and width properties are rectangu-
lar in shape. Although the area can contain elements that are not rectangular, the
container itself is a rectangle.

203

9

III
Part

Ch

So what happens when you define a container for positioning, but the content is too big for the
area? This is where the overflow and clip properties come into play.

overflow Property
Although the width and height properties give you added flexibility, sometimes these attributes
can work against you. Suppose you are trying to create a text area that is 2 inches wide, and 1
inch tall. No problem. What happens if you have more text to go in the text area than 2 square
inches? Of course, you could use font attributes to make the text smaller, but then legibility
would suffer. Instead, you can rely on the overflow property.

The overflow property enables you to instruct the browser how to handle the extra data if you
have text that exceeds the specified height and width of the positioning container. The overflow
property accepts three values:

■ none—This value indicates that no overflow handling should be performed. The result
will be the default handling based on the browser that you are using.

■ clip—With the overflow property set to clip, any data that will not fit in the container will
simply be left out.

■ scroll—The scroll value instructs the browser to limit the display to the container area,
but to add scroll bars to make the rest of the data accessible. This is generally the
preferable method of handling overflow data.

Listing 9.6 demonstrates how to implement the overflow property. Figure 9.7 demonstrates the
visual handling of data that exceeds the area constraints of the container defined in listing 9.6.

Listing 9.6 Handling Overflow Data

01. <HTML>
02. <HEAD>
03. <TITLE>Overflow</TITLE>
04. </HEAD>
05. <BODY>
06. <P>
07.
08. <DIV id=”REL” STYLE=”position: relative; top: 50px; left: 50px;
➥width: 2in; height: 1in; color: blue; overflow: scroll”>
09. This text is placed using relative positioning, but makes use of the
➥width tag to force the text into a 2 inch column, and the height tag
➥to limit the column to 1 inch. Since there is an ‘overflow’ of text,
➥the scrollbars provide access to all of the text.</DIV>
10.
11.</BODY>
12.</HTML>

overflow Property

204 Chapter 9 Layout and Positioning

http://www.quecorp.com

Line 8 in listing 9.6 specifies that the container area will be 2 inches by 1 inch, and that over-
flow should be handled with a scrollbar.

clip Property
The previous example of handling overflow (listing 9.6) dealt with handling too much text;
however, what happens if the data that is too big for your positioning container is an image? In
this scenario, you will need to make use of the clipping capability.

The clip property enables you to specify a clipping area for data and images—in effect, crop-
ping the images in place. To use the clip property to crop an image, you need to follow these
steps:

1. Define a container and use absolute positioning to position the element that will be
clipped.

2. Use the overflow property to specify that overflowed data should clip.

3. Use the clip property to specify how the image should be clipped.

The clip property accepts two values:

■ auto—With this value selected, the clipping area is the area of the container.

■ rect—With this value selected, you can specify a clipping rectangle by giving it the
coordinates for the top, right, bottom, and left sides of the rectangle, with respect to the
container’s origin.

The following line defines a clipping rectangle 3cm×2cm, with the rectangle defined by giving
the coordinates for the top-left corner, and the bottom-right corner:

<DIV STYLE=”position: absolute; overflow: clip; clip: rect(1cm 4cm 3cm 1cm)”>

This clipping rectangle is defined in relation to whatever area would be defined with top, left,
width, and height. Listing 9.7 demonstrates clipping using the 2cm×3cm container size. Figure
9.8 shows how the image is cropped using this clipping specification.

FIG. 9.7
The overflow property
allows for handling data
larger than a positioning
container.

205

9

III
Part

Ch

Listing 9.7 Cropping an Image with the clip Property

01. <HTML>
02. <HEAD>
03. <TITLE>Clipping</TITLE>
04. </HEAD>
05. <BODY>
06. <P>
07.
08. <DIV id=”REL” STYLE=”position: absolute; top: 5px; left: 250px; width: 5px;
➥height 5px; overflow: clip; clip: rect(1cm 4cm 3cm 1cm)”>
09.
10. </DIV>
11.
12. </BODY>
13. </HTML>

Layers
One of the most important features of CSS Positioning and Dynamic HTML is the capability to
place HTML elements on different layers that can be manipulated. It is by exploiting layers that
you can show and hide elements on a page, which is the basis for many Dynamic HTML ef-
fects, such as expanding and collapsing outlines.

The capability to specify which layers the elements appear on also contributes to the capability
to overlap elements or create transitions between layers in response to user interaction. With-
out layers, overlapping elements would be nearly impossible, and it would be difficult to control
which elements appeared in the foreground or background.

Layering elements with Dynamic HTML and CSS Positioning is very simple, and really only
involves two concepts, Z-indexing and visibility.

FIG. 9.8
Clipping can be used to
crop images in place.

Layers

206 Chapter 9 Layout and Positioning

http://www.quecorp.com

z-index Property
If you think of the top and left positions as being the equivalent of Y and X coordinates, then it
makes sense that layers would actually be defined by the Z coordinate, just as they would in a
3D world. Essentially, all you are doing with layers is determining which layer appears in the
front from the successive layers working into the background.

CSS Positioning determines which layers appear in the foreground or background with the
z-index property, which enables you to specify a numerical identifier for an element’s layer. The
Z-index values can be positive or negative integers. The default (foreground) layer is 0, and
increasing numbers specify “deeper” layers. If you had two elements defined as

 <DIV STYLE=”position: absolute; z-index: 3">Front</DIV>
 <DIV STYLE=”position: absolute; z-index: 7">Back</DIV>

the element with a Z-index value of 3 would appear in front of the element with a Z-index value
of 7. Layers can be specified with both positive and negative numbers. You can even place
elements on the same layer by sharing Z-indexes:

 <DIV STYLE=”position: absolute; z-index: 5">I am</DIV>
 <DIV STYLE=”position: absolute; z-index: 5">With Him</DIV>

Elements that have the same Z-index value will be stacked by the browser, and therefore
have no pre-established layering order. This can be used to group objects that might not

overlap with each other, but that you might want to have on the same layer. If, for example, you had an
illustration of a pizza, the crust might be a layer, the sauce another, the cheese a third, but you might
want to group both mushrooms and sausage together in a layer called “toppings.” ■

Listing 9.8 and its complementary figure (9.9) demonstrate the use of assigning Z-index values
to layers.

Listing 9.8 Layering HTML Elements Through the Use of Z-Indexing

01. <HTML>
02. <HEAD>
03. <TITLE>Layers</TITLE>
04. </HEAD>
05. <BODY>
06. <P>
07.
08. <DIV id=”Layer1" STYLE=”position: absolute; top: 10px; left: 10px;”>
➥<H1>Layer One</H1></DIV>
09. <DIV id=”Layer2" STYLE=”position: absolute; top: 20px; left: 20px;
➥color: blue;”> <H1>Layer Two</H1></DIV>
10. <DIV id=”Layer3" STYLE=”position: absolute; top: 30px; left: 30px;
➥color: red;”><H1>Layer Three</H1></DIV>
11. <DIV id=”Layer4" STYLE=”position: absolute; top: 40px; left: 40px;
➥color: green;”><H1>Layer Four</H1></DIV>
12.
13. <DIV id=”Layer1" STYLE=”position: absolute; top: 10px; left: 210px;
➥z-index: 4"><H1>Layer One</H1></DIV>

N O T E

207

9

III
Part

Ch

14. <DIV id=”Layer2" STYLE=”position: absolute; top: 20px; left: 220px;
➥color: blue; z-index: 3"><H1>Layer Two</H1></DIV>
15. <DIV id=”Layer3" STYLE=”position: absolute; top: 30px; left: 230px;
➥color: red; z-index: 2"><H1>Layer Three</H1></DIV>
16. <DIV id=”Layer4" STYLE=”position: absolute; top: 40px; left: 240px;
➥color: green; z-index: 1"><H1>Layer Four</H1></DIV>
17.
18. </BODY>
19. </HTML>

In listing 9.8, the first set of heads, defined in lines 8–11, are ordered naturally, with the first
head on top, the next head below that, and so on until all the heads are displayed. In the second
set of heads defined in lines 13–16, you can reverse how the headlines are rendered by assign-
ing a different z-index value to each element.

visibility Property
Now that you can place elements on different layers, you are probably wondering what else can
be done with layers. The capability to create layers is useful for overlapping and other layout
effects. There is another feature of layers, however, that provides even greater flexibility for
developing user interfaces—visibility.

The visibility property enables you to specify if a layer and its contents are visible on a ren-
dered page. The visibility property accepts two values: “visible” and “hidden.”

By changing these two values, you can essentially hide data from the user, so it does not appear
on the page, although it is still loaded. You can show the user the data at an appropriate time,
based on a user event or time span, with no further interaction with the server. This capability
to hide and display data is a very handy feature, especially when used with expanding outlines
as demonstrated in the example in Chapter 8, “Dynamic Styles.”

FIG. 9.9
Changing the z-index
value enables you to
manipulate an
element’s layering
position.

Layers

208 Chapter 9 Layout and Positioning

http://www.quecorp.com

CAUTION

Hiding elements on layers does not prevent them from being downloaded. Therefore, if you have large
elements that are hidden, keep in mind that it will still take time for those elements to be downloaded when
a viewer reaches your page, and that those elements will still consume memory.

Listing 9.9 provides a sample implementation of the visibility property:

Listing 9.9 Using the visibility Property to Hide and Display Element Layers

01. <HTML>
02. <HEAD>
03. <TITLE>Visibility</TITLE>
04. </HEAD>
05. <BODY>
06. <P>
07.
08. <DIV id=”one” STYLE=”position: absolute; top: 10px; left: 10px; color: red;
➥visibility: visible”><H1>Visible Text</H1></DIV>
09. <DIV id=”two” STYLE=”position: absolute; top: 20px; left: 20px; color: blue;
➥visibility: hidden”><H1>Hidden Text</H1></DIV>
10.
11. <DIV id=”three” STYLE=”position: absolute; top: 10px; left: 210px; color: red;
➥visibility: hidden”><H1>Visible Text</H1></DIV>
12. <DIV id=”four” STYLE=”position: absolute; top: 20px; left: 220px; color:
➥blue; visibility: visible”><H1>Hidden Text</H1></DIV>
13.
14. </BODY>
15. </HTML>

In this example, lines 8 and 9 establish the text elements, which make use of the visibility prop-
erty to show one line of text and hide the other. The process is reversed in lines 11 and 12 to
show how easy it is to alter the visibility of an element on the page. The result of swapping the
visibility properties from lines 8–9 with lines 11–12 is shown in figure 9.10.

FIG. 9.10
Switching the visibility
attributes makes the
hidden text visible.

209

9

III
Part

Ch

As you can see, the capability to hide and display the contents of layers is a very powerful
feature. Part V of this book, “Multimedia and Dynamic HTML” makes extensive use of the
visibility feature to make information available to viewers without re-loading data from the
server.

Moving Elements
Now that you are familiar with CSS Positioning and the properties that are used to position
elements on the page, this chapter will finish up with a demonstration of how you can use
Dynamic HTML to animate those elements.

The process for animating elements with Dynamic HTML is pretty simple. You are simply
going to employ JavaScript (or VBScript) functions to manipulate the parameters for defining
element locations. The end result is the motion of those elements on the page. The lines in the
code snippets that follow are numbered corresponding to their placement within the final code
in listing 9.10.

First, you need to define an element that you are going to move:

43. <DIV id=”CAT” STYLE=”position: relative; top:–200; left:25px”>
44.
45. </DIV>

This code creates an element with an ID of “CAT” that is actually positioned off of the HTML
page with the value for the top property specified as “–200”. The element itself will not be ren-
dered on the page when the page loads, but we are going to develop the script to animate it, so
that it “flies” onto the page when the page is loaded.

Now that you have defined an element that you can move, it is time to write the script that will
move the image. What you want to do is to manipulate the value of the top property to bring the
image from off-screen until it is on-screen. This will be done by setting coordinates for the top
value from a location off-screen to a location on-screen. This process starts with a simple func-
tion to increment the value of the top property:

07. function MoveThatCat() {
09. CAT.style.posTop += 1;
12. }

The MoveThatCat() function is fine, except that now there is nothing to stop the image on the
page. If you were to use the MoveThatCat() function by itself, the image would start at the
coordinates off the viewable page, and continue to move off the page endlessly.

What you really want is to stop the image of the cat at the top of the page, say around 15. By
adding an if statement, you instruct the MoveThatCat() function to stop when the value of the
top property hits 15 pixels:

07. function MoveThatCat() {
08. if (CAT.style.posTop < 15) {
09. CAT.style.posTop += 1;
11. }
12. }

Moving Elements

210 Chapter 9 Layout and Positioning

http://www.quecorp.com

Take a look at the code for this animation at this point and see how it functions:

01. <HTML>
02. <HEAD>
03. <TITLE>Move the Cat</TITLE>
04.
05. <SCRIPT>
06.
07. function MoveThatCat() {
08. if (CAT.style.posTop < 15) {
09. CAT.style.posTop += 1;
11. }
12. }
13.
29. </SCRIPT>
30. </HEAD>
31.
32. <BODY onLoad=”MoveThatCat();”>
33.
43. <DIV id=”CAT” STYLE=”position: relative; top:–200; left:25px”>
44.
45. </DIV>
46.
47. </BODY>
48. </HTML>

Within this HTML code, a line has been added (line 32) within the <BODY> tag to invoke the
MoveThatCat() function that moves the image.

This line binds the MoveThatCat() function to the onLoad event that is called when the page
loads. If you view this page, you will see the image of the cat jump from off-screen to the final
position when the page loads. But why doesn’t it fly?

The problem is that the steps occur too rapidly for the eye to see. In order to create the illusion
of flying, you need to add a JavaScript method called window.setTimeout() that slows down the
MoveThatCat() function:

07. function MoveThatCat() {
08. if (CAT.style.posTop < 15) {
09. CAT.style.posTop += 1;
10. window.setTimeout(“MoveThatCat();”, 1);
11. }
12. }

The window.setTimeout() function takes two arguments, the function that is being timed out,
and the value of the pause, in milliseconds. Here, the setTimeout() function is instructed to
slow down MoveThatCat() by one millisecond before each step. This delay should be enough
to fly our kitty.

The finished code in listing 9.10 adds a few more animated elements to create an entire page
with moving images and text—some scrolling text and a text block that moves when it is
clicked.

211

9

III
Part

Ch

Listing 9.10 Animated Images and Text on a Page with Positioning and
Scripting—Fly Kitty, Fly!

01. <HTML>
02. <HEAD>
03. <TITLE>Animation</TITLE>
04.
05. <SCRIPT>
06.
07. function MoveThatCat() {
08. if (CAT.style.posTop < 15) {
09. CAT.style.posTop += 1;
10. window.setTimeout(“MoveThatCat();”, 1);
11. }
12. }
13.
14. function ScrollText() {
15. if (CAPTION.style.posLeft > 25) {
16. CAPTION.style.posLeft –= 1;
17. window.setTimeout(“ScrollText();”, 2);
18. }
19. }
20.
21. function MoveTextBlock() {
22. if (BLOCK.style.posLeft < 250) {
23. BLOCK.style.posTop += 5;
24. BLOCK.style.posLeft += 5;
25. window.setTimeout(“MoveTextBlock();”, 1);
26. }
27. }
28.
29. </SCRIPT>
30. </HEAD>
31.
32. <BODY onLoad=”MoveThatCat();ScrollText();”>
33.
34. <DIV id=”BLOCK” STYLE=”position: relative; top:10; left:25px; width: 2in;
➥color: blue; z-index: 2" onclick=”MoveTextBlock();”>
35. This is some text formatted into a column. If you click on this text, it
➥will move, but retain its formatting.
36. </DIV>
37.
38. <P>
39. <DIV id=”CAPTION” STYLE=”position: relative; color: red; top: 12; left:
➥250px; z-index: 1">
40. <H1>Scroll in Some Text</H1>
41. </DIV>
42.
43. <DIV id=”CAT” STYLE=”position: relative; top:–200; left:25px”>
44.
45. </DIV>
46.
47. </BODY>
48. </HTML>

Moving Elements

212 Chapter 9 Layout and Positioning

http://www.quecorp.com

Each of the elements in listing 9.10 has a JavaScript function that is responsible for moving it.
The image of the cat will scroll in from the top, and the text will scroll in from the right. Finally,
there is a paragraph of formatted text that will not move until the user clicks it. The motion for
this element is actually called by a function bound to the element itself with the code in lines
34–36.

This code waits to receive a mouse click, and when it does, it calls the MoveTextBlock() func-
tion, which animates the text. Figure 9.11 shows the final page in action with the scrolling text
and the flying cat. Figure 9.12 shows the path of the text block after it has been clicked.

FIG. 9.11
The position of the
elements before any
user interaction.

FIG. 9.12
The positions of the
elements as they are
moved on the screen.

213

9

III
Part

Ch

As you can see, animating objects with Dynamic HTML is really a cross between CSS Position-
ing and scripting and additional methods accessed through the object model. As with many
features of Dynamic HTML, it is simply through the Dynamic HTML Object Model exposing
the elements that animation is possible. The end result can be more dynamic pages, or even
new interfaces that can be used with technologies such as the Channel Definition Format to
create new resources for the web.

From Here…
As you continue to learn about the features of Dynamic HTML, you will encounter more com-
plex topics, from animation to full user interaction, and finally advanced multimedia with
ActiveX Controls and data binding. As you have seen from this and previous chapters, there is
a great deal of underlying technology that needs to be mastered to exploit Dynamic HTML to
its fullest. In the end, the results can definitely be worth it.

As you continue on, please be sure that you are comfortable with each of the concepts in the
chapter before progressing. Doing so will keep you armed and ready for the concepts that are
discussed later, and help you build strong, interesting Dynamic HTML sites. For now, turn
your attention to Chapter 10, “Dynamic Content,” where you will explore topics such as replac-
ing text, and manipulating elements on a page in real time. The capability to alter content dy-
namically, or on-the-fly, is one of the most powerful features of Dynamic HTML, enabling you
to alter virtually the properties, style, even the meaning of any content on the web page.

From Here…

214 Chapter 9 Layout and Positioning

http://www.quecorp.com

215

10

III
Part

Ch

P

10C H A P T E R

revious chapters discussed the weaknesses of traditional
HTML and the strengths of Dynamic HTML. You also
learned about some of the merits of Microsoft’s Dynamic
HTML implementation versus that of other vendors such
as Netscape. In both instances, one aspect of Dynamic
HTML continues to set it apart as an important new tech-
nology—the capability to manipulate content on the page
after the page has been loaded.

The capability to manipulate text, images, and even tags
on a web page after it has been loaded is one of the pri-
mary advantages of Dynamic HTML. This feature, which
is known as dynamic content, enables you to move images
on a page, change styles, replace images, replace text, and
even manipulate the actual HTML tags used to describe
the page.

The advantage to this type of manipulation is that the
content of web pages can be manipulated, by both the
page author and the viewer, after the page has been fully
loaded. Content can be altered through scripts that are
timed to run after a set amount of time, or content could
be altered by triggers in the user interface, creating a new
graphical user interface for the web that is similar to ac-
tual applications. ■

Dynamic Content

Discover how to use Dynamic
HTML to create web pages with
content that changes after the page
has been loaded, without recontact-
ing the web server.

Runtime Content

Unlike traditional methods, such as
cookies, Dyanmic HTML provides
for content manipulation at runtime,
after a page has been downloaded
from the server.

Text Ranges

Text ranges provide a mechanism
for selecting text on an HTML page,
including HTML tags, and replacing
the text and tags, all at runtime.

Object Model Properties

The object model properties:
innerHTML, outerHTML,
innerText, and outerText allow for
very flexible manipulation of virtu-
ally any item on a web page.

Dynamic Content

216 Chapter 10 Dynamic Content

http://www.quecorp.com

Changing Content at Runtime
Prior to the release of Dynamic HTML and Internet Explorer 4.0, methods existed to manipu-
late the content of a page for an individual user. Cookies and other features could be used to
pass information to the server about the user’s environment and state. Pages then could be
changed according to user parameters.

This is a very powerful feature for customizing the content of pages for users; however, you
still had no means of altering the HTML on a page after the page had already been loaded
without contacting the server.

The Dynamic HTML Object Model changes that by exposing all the elements on a page to ma-
nipulation through scripting. Specifically, the TextRange object enables you to alter any HTML
tag, or the content of the tag, with a script. This enables you to make sweeping changes to an
entire page, or to select a single tag to be changed. This type of manipulation enables complete
content flexibility. Entire paragraphs can be replaced on a page, without ever recontacting the
web server, speeding up content delivery for viewers while adding flexibility for designers.

Replacing Elements on an Existing Page
Dynamic HTML offers several mechanisms for changing the content on the page after the page
has already been loaded. You have already seen several examples of this with dynamic styles.
Dynamic styles affect the page layout after the page has already been loaded. Changing the fonts,
colors, and layouts are all examples of dynamic styles and, in a sense, dynamic content.

The real power of dynamic content, however, actually lies in the capability to change the tags
and text that make up a page. The process is not particularly difficult, but it is one of the more
important aspects of Dynamic HTML. Dynamic content enables you to provide continuously
updated information on a web page, which is useful for such applications as the dynamic con-
tent clock, shown in figure 10.1.

FIG. 10.1
The dynamic clock is an
example of using
dynamic content on a
web page.

217

10

III
Part

Ch

You also can use dynamic content to change the entire content of a page without contacting the
server. The power to create dynamic content is all provided through the Dynamic HTML Ob-
ject Model, and through two principle techniques: text ranges and the Structured Object
Model.

In the text we will refer to the TextRange object as “TextRange” when we are discussing a
specific aspect or usage of the object. When we are talking about generic “ranges” of text,
they will be referred to as “text ranges.” Although this might seem a little confusing, as you

begin to understand more about the TextRange object, the distinction should become more clear. ■

Changing Text
The capability to change content dynamically at runtime allows for a number of different ef-
fects in relation to style and graphic elements on a page. You have already seen how you can
use Dynamic HTML to change the information about styles on your pages in Chapter 8, “Dy-
namic Styles.” These effects can be used to change fonts, colors, or other style characteristics
on a page after the page has been loaded. But what about changing the actual content of the
page itself? That is where TextRange objects come in.

TextRange Objects
HTML pages consist of HTML tags, scripts, other defining elements, and the text that makes
up the content of the page. Take the following HTML code, for example:

<HTML>
<TITLE>Sample Page</TITLE>
<BODY>

<H2>This is a Sample Page.</H2>
<P>This is some sample text</P>
</HTML>
</BODY>

From a code standpoint, all the element tags are part of the document’s structure, while the
text is the part of the document known as the stream. In the preceding example, the stream
would be “This is a Sample Page. This is some sample text”. When defining the stream, there is
no differentiating between what text is associated with what element in the stream. In other
words, it doesn’t matter whether the text is defined by the <H2> tag or the <P> tag—it’s all text,
regardless of the applied style.

The TextRange object enables you to select a stream of text, and then manipulate the stream to
edit the text that appears on your page. TextRange objects are defined using the
createTextRange() method as shown in the following line:

var someRange = document.body.createTextRange();

N O T E

TextRange Objects

218 Chapter 10 Dynamic Content

http://www.quecorp.com

If this were called with the previous basic HTML example, the TextRange object would appear
as:

Sample Page This is a Sample Page

After you select the text range, you can use a number of different methods to manipulate the
resulting TextRange object. These methods can select various bits of text and replace it with
new text, providing true dynamic content.

TextRange Object Properties and Methods
You can use a number of properties and methods with TextRange objects to provide the capabil-
ity to change text and elements on the page. The following sections provide a rundown of the
properties and methods available and how they function.

Properties Two TextRange object properties can be used to access the data that is selected in
a TextRange object. These properties are separated into the text and the HTML:

■ htmlText—The htmlText property returns the HTML fragment for the selected text
range. Use this property if you want to manipulate the tag. For example:

<H2>This is the text</H2>

The htmlText in the preceding code would be <H2></H2>.

■ text—The text property returns only the text of the tag. Use this property if you want to
alter the tag’s content without changing the tag itself. For example:

<H2>This is the text</H2>

The text in the preceding code would be “This is the text”.

Methods A number of new methods exist that can be used to establish and select TextRange
objects. The following list provides some descriptions of the methods and how they perform.

■ createTextRange()—Call the createTextRange() method to select a text range. Creating
a TextRange object with this method creates a text range for the selected element that is
bound by the first and last items in the element. Later, when moving the start and ending
points of the range, be aware that the boundaries cannot be moved beyond the initial
boundaries of the range.

The createTextRange() method is also limited in the number of elements on which it can
be called. Currently, the createTextRange() method only supports the <BODY>, <INPUT
TYPE=TEXT>, <TEXTAREA>, and <BUTTON> elements.

■ duplicate()—Call this method to create a duplicate of the contents of the TextRange
object.

■ parentElement()—Calling this method returns the parent element for the selected
range, which can be used to indicate the element that will be replaced or manipulated by
other TextRange object methods.

219

10

III
Part

Ch

■ inRange()—Use this method to compare two TextRange objects to see if one is con-
tained within the other, or to see if the two ranges are equal. This can be used to assist in
finding substrings within ranges.

■ isEqual()—Use this method to compare two selected TextRange objects to see if their
content is the same. This can be useful for comparing copy.

■ scrollIntoView()—This method causes a selected TextRange object to scroll into view.

■ setEndPoint()—Use this method to select the endpoint of one TextRange object based
on the endpoint of another text range.

■ compareEndPoints()—Use this method to determine if two TextRange objects share a
common endpoint. The method returns a value of –1 (less than), 0 (equal), or 1 (greater
than).

TextRange Object Movement Methods After you select a TextRange object, you can move the
starting and ending points of the range by using the range movement methods. When using
these methods, understand that you are not actually moving any of the text on the page; you
are actually moving the boundaries of the range itself, thereby affecting the text that is se-
lected.

The following list contains some of the methods you can use to move TextRange objects:

■ move()—Use this method to move the text range—but not the text itself—a number of
units.

■ moveEnd()—Use this method to move the ending point of the current TextRange. This
is useful for truncating text within the text range on which this method is applied.

■ moveStart()—Use this method to change the starting point of a TextRange. Use this
method in conjunction with the moveEnd() method to refine the text selected by a
TextRange.

■ pasteHTML()—The pasteHTML() method is an orphan method that you can use to
insert HTML text into a text range.

Using TextRange Objects for Dynamic Content
The capability to manipulate TextRange objects is actually a very powerful feature of Dynamic
HTML. The following sections provide some examples of the types of manipulations that can
be performed on TextRange objects.

Changing an Entire Document
Perhaps the best demonstration of the power of TextRange objects is the capability to manipu-
late the entire content of the page in a few simple lines of code. This could be used to create a
flip book effect or to reveal a solution to a puzzle, for example. The basic mechanism for these
types of changes is to select the text range for the document, and then replace it with the text
for a new document. The lines of code for these two processes are numbered to correspond
with their placement in listing 10.1.

Using TextRange Objects for Dynamic Content

220 Chapter 10 Dynamic Content

http://www.quecorp.com

First, you need to define a page:

01. <HTML>
02. <HEAD>
13. <BODY onclick=”replacePage()”>
14.
15. <H1>Text Ranges</H1>
16. The entire text on this page can be selected and replaced
17. using text ranges.
18. </BODY>
19.
20. </HTML>

This creates a page that will call a function called replacePage() when the page is clicked. The
page created before the replacePage() function is called is shown in figure 10.2.

FIG. 10.2
A straightforward web
page.

Next you need to create the script that will replace the page:

06. <SCRIPT LANGUAGE=JAVASCRIPT>
07. function replacePage() {
08. var bRange = document.body.createTextRange();
09. bRange.pasteHTML(“<H1>This text has replaced the page contents.</H1>”);
10. }
11. </SCRIPT>

This script creates a simple replacePage() function that first creates a TextRange object that
contains the entire page with the following line:

var bRange = document.body.createTextRange();

This line declares a bRange variable and then sets it to the text of the page which is the text
contained within the BODY element. Then, you simply use the pasteHTML() function to re-
place the page’s content:

bRange.pasteHTML(“<H1>This text has replaced the page contents.</H1>”);

Invoking this method replaces the TextRange object and modifies the appearance of the page.
Listing 10.1 shows the final code, and the results of clicking on the page are shown in figure
10.3.

221

10

III
Part

Ch

Listing 10.1 Replacing an Entire Document with TextRanges

01. <HTML>
02. <HEAD>
03. <TITLE>Text Ranges</TITLE>
04. </HEAD>
05.
06. <SCRIPT LANGUAGE=”JAVASCRIPT”>
07. function replacePage() {
08. var bRange = document.body.createTextRange();
09. bRange.pasteHTML(“<H1>This text has replaced the page contents.</H1>”);
10. }
11. </SCRIPT>
12.
13. <BODY onclick=”replacePage()”>
14.
15. <H1>Text Ranges</H1>
16. The entire text on this page can be selected and replaced
17. using text ranges.
18. </BODY>
19.
20. </HTML>

Deleting Page Contents
As you can see from listing 10.1, you can easily replace the entire page with new HTML; how-
ever, you can just as easily paste nothing onto the page, effectively deleting the entire page’s
content. This effect is shown in listing 10.2.

Listing 10.2 Deleting the Contents of a Web Page

01. <HTML>
02. <HEAD>
03. <TITLE>Text Ranges</TITLE>
04. </HEAD>
05.

FIG. 10.3
The new page after the
TextRange object is
changed.

Using TextRange Objects for Dynamic Content

continues

222 Chapter 10 Dynamic Content

http://www.quecorp.com

06. <SCRIPT LANGUAGE=JAVASCRIPT>
07. function replacePage() {
08. var bRange = document.body.createTextRange();
09. bRange.pasteHTML(“”);
10. }
11. </SCRIPT>
12.
13. <BODY onclick=”replacePage()”>
14.
15. <H1>Text Ranges</H1>
16. The entire text on this page can be selected and replaced
17. using text ranges.
18. </BODY>
19.
20. </HTML>

In listing 10.2, the bRange.pasteHTML() function shown in lines 7–10 selects and deletes the
text on the page, as defined in lines 15–18. Line 8 uses the createTextRange() method to create
the text range “bRange.” Then, line 9 actually uses the pasteHTML() method to replace the
content with an empty line, effectively deleting the page content.

Substituting Specified Text
Although some instances exist where it might be useful to replace the entire contents of a
page, more often than not, it will be more useful to replace individual segments of text. To
accomplish this, you can use the TextRange object movement methods to manipulate the start-
ing and ending points of the text range, effectively narrowing down or selecting a limited por-
tion of the text stream. Note that the progressive lines of code leading up to the final listing are
numbered to correspond with their placement in listing 10.3.

The following code defines the page shown in figure 10.4:

01. <HTML>
14. <BODY onclick=”replacePage()”>
15.
16. <H1>Text Ranges</H1>
17. We can use TextRanges move methods to replace selected text.
18. </BODY>
19.
20. </HTML>

You can then define a function to replace the text, as performed in listings 10.1 and 10.2:

06. <SCRIPT LANGUAGE=JAVASCRIPT>
07. function replacePage() {
08. var bRange = document.body.createTextRange();
11. }
12. </SCRIPT>

Listing 10.2 Continued

223

10

III
Part

Ch

At this point, if you call the pasteHTML() function as you did on line 9 of listing 10.2, you will
replace the entire page, which is not the goal for this example. Instead, change the text on the
page from “We can use TextRange’s move methods to replace selected text” to “We can use
TextRanges to manipulate text.”

Your first task is to narrow the selection of the text range. The current TextRange object is:

Text Ranges We can use TextRange’s move methods to replace selected text.

Now you can use the moveStart() method to move the starting point from the 0 element to the
7th word. The result of the following code

09. bRange.moveStart(“Word”, 7);

is that the text range will now be

move methods to replace selected text.

This is the text you are interested in replacing. Now all you have to do is use the text property
to change the text as follows:

10. bRange.text=”to manipulate text.”;

Listing 10.3 shows the finished code, and figure 10.5 shows the resulting page.

Listing 10.3 Substituting Specific Text on a Page

01. <HTML>
02. <HEAD>
03. <TITLE>Text Ranges</TITLE>
04. </HEAD>
05.
06. <SCRIPT LANGUAGE=JAVASCRIPT>
07. function replacePage() {
08. var bRange = document.body.createTextRange();
09. bRange.moveStart(“Word”, 7);
10. bRange.text=”to manipulate text.”;
11. }
12. </SCRIPT>

FIG. 10.4
An unsuspecting web
page.

Using TextRange Objects for Dynamic Content

continues

224 Chapter 10 Dynamic Content

http://www.quecorp.com

13.
14. <BODY onclick=”replacePage()”>
15.
16. <H1>Text Ranges</H1>
17. We can use TextRanges move methods to replace selected text.
18. </BODY>
19.
20. </HTML>

FIG. 10.5
With TextRange object
movement methods, a
selected portion of the
page can be replaced
when a user clicks it.

Structured Object Model
TextRange objects can be a very powerful, forceful technique for manipulating the text on a
page. If you need to replace an entire page at once, TextRange objects will do the trick. At
times, however, it might be necessary to change the contents of one tag. Likewise, if you want
to change the tag itself, you will need to rely on the Object Model.

The Object Model provides four very important properties that give you a wide range of flex-
ibility for manipulating HTML elements and text:

■ innerText

■ innerHTML

■ outerText

■ outerHTML

The following sections explore in detail how each of these properties work.

innerText
The innerText property defines or retrieves the text that can be found between the starting and
ending tags of the current element. This property is used in the following manner:

element.innerText = “value”;

Listing 10.3 Continued

225

10

III
Part

Ch

Suppose, for example, that you had the following HTML code:

<H2 ID=”MyHeadline”>This is my headline</H2>

The innerText value of this would be “This is my headline”. Writing the code:

MyHeadline.innerText=”A New Headline”;

would effectively change the <H2> tag to:

<H2 ID=”MyHeadline”>A New Headline</H2>

innerHTML
The innerHTML property defines the value of any HTML that is contained within a specified
HTML element. It is used similarly to the innerText property:

element.innerHTML = “value”;

Suppose, for example, that you had the following HTML code:

<P ID=”MyText”>This is my paragraph</P>

The innerHTML value of this would be “my”. Writing the code:

MyText.innerHTML=”<I>your</I>”;

would effectively change the <P> tag to:

<P ID=”MyText”>This is <I>your</I> paragraph</P>

outerText
The outerText property simply defines the text value of the current element similarly to the
innerText property; however, outerText also includes the element’s HTML tags as text. This
property is used in the following manner:

element.outerText = “value”;

So, using our code from the innerText example:

<H2 ID=”MyHeadline”>This is my headline</H2>

The outerText value of this would be “<H2>This is my headline</H2>”. The difference between
inner and outer is that the outerText contains the HTML tags. Writing the code:

MyHeadline.outerText=”This is no longer a headline!”;

would effectively change the <H2> tag to:

<B ID=”MyHeadline”>This is no longer a headline!

outerHTML
The outerHTML property sets the value of an HTML element’s entire tag, including both the
text and the HTML tag itself. The relationship between innerHTML and outerHTML is like that
of innerText and outerText:

element.outerHTML = “value”;

Structured Object Model

226 Chapter 10 Dynamic Content

http://www.quecorp.com

Suppose, for example, that you had the following HTML code:

<P ID=”MyText”>This is my paragraph</P>

The outerHTML value of this would be “<P>This is my paragraph</P>”. Writing the
code:

MyText.outerHTML=”<H2>This is <I>your</I> healine</H2>”;

would effectively change the <P> tag to:

<H2 ID=”MyText”>This is <I>your</I> headline</H2>

Using the Object Model for Dynamic Content
Now that you are familiar with the Object Model’s properties, look at an example that will
change the text in a tag when clicked, and then the entire tag when double-clicked. The pro-
gressive lines of code that follows are numbered to correspond with the placement in the final
code in listing 10.4.

The first thing you need to do is design your basic page, as shown in figure 10.6, with the fol-
lowing code:

01. <HTML>
02. <HEAD>
17. </HEAD>
18. <BODY>
19. <P>
20. <H1 id=”HEADLINE” STYLE=”color: red” onclick=”ChangeText()”;
➥ondblclick=”ChangeTag();”>This is a Level One Headline</H1>
21. <P>
22. Click on the text above to watch it change.

23. Double click it for the magic.
24. </BODY>
25. </HTML>

FIG. 10.6
An innocent looking web
page, waiting for
interaction.

In this example, you want to first change the text in the tag when the headline is clicked, so
you need to write a function that changes the text of the tag without altering the tag itself.

227

10

III
Part

Ch

To change the text in a tag without altering the tag, the innerText property is perfect. If you call
this property on the headline, you can replace the headline text while still keeping the tag a
level one header. The function looks like this:

07. function ChangeText() {
08. HEADLINE.innerText = “With a click the text is changed!”;
09. }

Now when the ChangeText() function is called, the innerText property will change the headline,
but leave the formatting intact, as shown in figure 10.7.

For the next step in this example, you will want to replace the text and the tag that is now the
headline. Because you want to change the entire element and keep it HTML, you will use the
outerHTML property to replace the entire tag as shown in figure 10.8. The second function
looks like this:

11. function ChangeTag() {
12. HEADLINE.outerHTML = “<H3>Now its a level three headline!!</H3>”;
13. }

That’s it! Now you have all the code you need to manipulate the individual tags in the document
to create some dynamic content. Listing 10.4 shows the finished page code.

Listing 10.4 A Page Using the Structured Object Model

01. <HTML>
02. <HEAD>
03. <TITLE>Replacing Text</TITLE>
04.
05. <SCRIPT LANGUAGE=JavaScript>
06.
07. function ChangeText() {
08. HEADLINE.innerText = “With a click the text is changed!”;
09. }
10.
11. function ChangeTag() {
12. HEADLINE.outerHTML = “<H3>Now its a level three headline!!</H3>”;
13. }
14.
15. </SCRIPT>
16.
17. </HEAD>
18. <BODY>
19. <P>
20. <H1 id=HEADLINE STYLE=”color: red” onclick=”ChangeText()”;
➥ondblclick=”ChangeTag();”>This is a Level One Headline</H1>
21. <P>
22. Click on the text above to watch it change.

23. Double click it for the magic.
24. </BODY>
25. </HTML>

Using the Object Model for Dynamic Content

228 Chapter 10 Dynamic Content

http://www.quecorp.com

Figure 10.7 shows the results of changing the content of a tag with the innerText property.
Conversely, figure 10.8 shows how you can actually change an HTML tag by making use of the
outerHTML property.

FIG. 10.7
Changing the contents
of a tag with the
innerText property.

FIG. 10.8
Changing a tag with the
outerHTML property.

As you can see from the results in figures 10.7 and 10.8, the Structured Object Model provides
a much finer control over manipulating individual page elements, enabling you to manipulate
the content of virtually any tag on the page dynamically, exposing the power of Dynamic HTML.

From Here…
With dynamic styles and dynamic content at your disposal, you are probably wondering what
more lies in store for Dynamic HMTL. Next, you will explore some of the advanced topics
coming up in Part IV, “Data Awareness,” which consists of the following coverage:

■ Chapter 11, “Introduction to Data Binding”—Introduces the methods used to bind data to
HTML objects, and how to create data integration with Dynamic HTML.

■ Chapter 12, “Using Data Source Objects”—Discusses some of the advanced features of
data awareness and using Data Source Objects to create fully functional database
applications with Dynamic HTML.

IVP A R T

Data Awareness

11 Introduction to Data Binding 231

12 Using Data Source Objects 251

231

11

IV
Part

Ch

D

11C H A P T E R

Introduction to Data
Binding

ata binding is one of the key features of Dynamic HTML.
Why is this? Working with data stored remotely from the
user is one of the most demanding and frustrating aspects
of programming for the web. Dynamic HTML’s facilities
for data binding work to make this process much less
demanding.

The first thing you need to know is exactly what is meant
by the term data binding and why it is an important aspect
of Dynamic HTML. ■

Server-Side Data Binding

Server-side data binding is not
only quite complex to implement
from the programmer’s perspec-
tive, but also poses severe
scalability problems. Learn the
downsides of this commonly
implemented dynamic content
paradigm.

HTML Data Binding
Extensions

Learn about the proposed HTML
extensions for data binding
presented by Dynamic HTML.
These extensions consist of three
attributes that enable you to
specify where to get the data
(DATASRC), what column of the
data you are interested in
(DATAFLD), and the format of
the data that is being retrieved
(DATAFORMATAS).

Data Consumers

Discover the various data con-
sumers and their special capabili-
ties as implemented by Dynamic
HTML. A data consumer is the
HTML element that the HTML
data binding extensions are used
on to allow data to be loaded into
them dynamically.

232 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

Defining Data Binding
In a broad sense, data binding is the process of attaching data to an HTML page. This data
does not come from the static HTML that makes up the page; instead it is provided by some
sort of external data source. For instance, the data could be generated via a database or a data
file on the server.

The data that is to be used for pieces of the web page that will display may come from many
sources, including:

■ A database server local to the web server

■ A live data feed of some sort

■ A remote database server

■ A text file on the web server

When data binding is used, data is transferred from these data sources to the elements of the
web page that are bound to that data. There are two general methods of accomplishing this.
First, the work to do the data binding can be done completely on the server. Second, the data
binding can be done by the client, off-loading work from the server to the client.

Server-Side Data Binding
The desire to dynamically retrieve data from the server has been strong in the web program-
ming community for quite a while. In fact, this desire was one of the major contributors to the
development of forms—the user interface items that have been present almost since the begin-
ning of the web and CGI.

CGI (common gateway interface) scripts enable the user, usually through forms, to interact
with the server machine to get data that the user wants to access. This process works quite
well on the web, and many commercial and noncommercial sites use it on a daily basis to pro-
vide interactive content to web users.

This process of placing forms on the client side—within the browser that communicates to the
web server via CGI scripts—can be referred to as server-side data binding. The name derives
from the data retrieval workload on the server side.

Take a look at the following step-by-step list to see what goes on when data is communicated to
the user through server-side binding:

1. The user connects to a remote site using a web browser running on his local machine.

2. The web page is downloaded to the user’s browser.

3. The user, usually through a form, selects the data that he wants to be presented.

4. This form executes a CGI script on the server.

5. The server executes the CGI script as a separate process on the machine that it is
running.

6. The CGI script fetches the subset of the data that it has the capability to access, which
the user wants to access.

233

11

IV
Part

Ch

7. This data is communicated back to the user’s machine as a new HTML document.

8. The user’s browser displays the new web page.

Early Attempts at Client-Side Data Binding
With the addition of JavaScript to Netscape Navigator 2.0, Netscape added a new—if somewhat
primitive—way to access data. JavaScript added the capability to download small scripts to the
client that were executed as programs purely on the client side, without connecting to the
server.

The trick to using this new programmatic capability to perform data binding is to embed the
data that is to display into the JavaScript program itself. This method has many advantages,
most importantly that it does not require any additional communication to the server after the
initial contact.

Unfortunately, this method also has several large downsides, including the following:

■ Increased script complexity

■ Increased script maintenance

■ Data maintenance

■ Impracticality

Of these four issues, data maintenance and the impracticality of using this method are of the
most concern.

When data is being embedded in the program itself, you really want a programmer updating
the data that is contained inside the program. Using this early form of client-side scripting runs
completely counter to the way things should be—the person responsible for the data should
keep it up to date, not the person providing the script for presenting the data.

Regarding practicality, assume that you have several hundred kilobytes of information that you
want to display dynamically. It doesn’t make sense to force the user’s web browser to download
this data in its entirety just to see one small portion of it. It is important to take note of this
downside due to the relatively slow connections most people have to the web.

Downsides to Server-Side Data Binding
It doesn’t make much practical sense to use data embedded in JavaScript to provide the user
with data because of the aforementioned reasons. It is a much more common practice to have
the browser execute a CGI script to retrieve the data. As mentioned earlier, this can be referred
to as server-side data binding.

Server-side binding has plenty of advantages; however, it also has many downsides. These
downsides make server-side binding impractical as the web grows larger and the data that is
being maintained expands and becomes more arduous with which to deal. The downsides of
server-side binding include the following:

Downsides to Server-Side Data Binding

234 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

■ Complexity

■ Server scalability

■ Round trip server transactions

■ Partial data retrieval

The ramifications of these downsides to server-side data binding are covered in detail in the
sections that follow.

Complexity of Server-Side Data Binding
The first problem with server-side data binding is the complexity that it entails. The first thing
to realize is that basically no state is kept on the client itself.

The concept of state refers to the capability to keep track of changing conditions. Consider,
for example, a user browsing through an online catalog. As the user travels from item to

item, the current item that the user is viewing needs to be known. This sort of data is an example of
keeping track of state. ■

Why is this? Think about the way that a web page is constructed. It basically is a static entity
that represents a visual document, which is being presented to the user. When the user per-
forms an action that is communicated to the server, the action is conveyed in one of two ways:
via the URL that is requested or via the POST/GET method when using forms.

Therefore, the only state kept on the web page is the data for which the user is currently ask-
ing. Although this is certainly useful information, the client can’t keep track of information that
would be quite useful when searching through massive amounts of data. For instance, the web
client has no idea how much of the database has currently been searched and cannot intelli-
gently optimize the ways in which the data is found and displayed.

This means that all the logic for searching and retrieving this information must be done on the
server, while the display must be done on the client. This causes a great deal of complexity in
the programming process, because the programmer must keep track of remote browsers’ state
through the URLs for which they ask.

This also adds a layer of complexity if you want to save the user’s search criteria across mul-
tiple sessions. Consider a real world example: a web-based search engine that does a very time-
and computer-intensive search of medical data for a doctor. This search may take several
minutes and a great deal of processor time on the server. In addition, doctors may well want
to view this data over a period of several hours.

In this instance, you really do not want to do the search every time the doctor comes back to
view the information. Therefore, you decide to cache the results of the query based on the URL
of the search results —perhaps by assigning each search a unique ID number—and having the
doctor bookmark it.

N O T E

235

11

IV
Part

Ch

You can already see how this process can become quite complicated. How do you cache the
information? How do you make sure that the correct cache is given to the correct doctor? What
sort of data flow issues do you have to consider?

Perhaps most important of all considerations, if you are going to cache the data, you need to
address a series of concerns: How long do you cache it? What do you do when the cache is
cleared? How do you clear the cache? Do you have a separate “cleaner” program that goes
through the search section of the web server?

This complexity affects multiple people throughout the process:

■ HTML Programmer(s)—HTML programmer(s) must keep in mind while writing
HTML code that only a subset of the data may be displayed currently. The HTML
programmer(s) must also write complicated scripts to generate the unique URLs that
will most likely be required to perform complicated searches.

■ CGI Programmer(s)—The CGI programmers’ lives are made more complicated by the
fact that they have almost all segments of the process to consider. CGI programmers
must decode a complicated URL into the arguments to derive the subset of data re-
quested. Then the CGI script must retrieve that data from the data source, in many cases
doing the search on the data itself. The CGI script must then dynamically convert the
data into a form that is presentable on the client side—usually in HTML.

 Server Scalabilty
Server-side data binding also introduces major problems related to the scalability of data ac-
cess on the server. Why is this? Server-side data binding is quite memory and compute inten-
sive on the server due to the many programs that are keeping track of many things at the same
time.

Scalability refers to the server’s capability to handle increasing amounts of traffic. If, for
instance, the method of data binding you are using takes 25 percent of the server’s CPU

time it will work great only if a few people are using it at a time. If, however, 100 people try to use
it at the same time it will run quite poorly. This is an example of a solution that is not scalable. In
general, the less server resources and communications bandwidth used, the more scalable a solu-
tion is. ■

Consider the standard way in which CGI scripts are run. The most common programming
language for CGI is Perl. Whenever a Perl CGI script is run on the server, an actual new in-
stance of the Perl interpreter is executed on the server machine.

This may not seem that important until you realize that this process of starting a new inter-
preter occurs for every instance in which the CGI script is called. The Perl interpreter isn’t an
overwhelmingly huge program, but imagine what happens when thousands of copies of it are
running at the same time. To put this in perspective, imagine starting up several hundred
copies of Netscape on your machine.

Downsides to Server-Side Data Binding

N O T E

236 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

This problem of starting up many copies of the environment that the CGI program is executing
in has been recognized for a long time. In fact, to alleviate this problem, many web servers
allow you to execute CGI programs through a method known as in-process that doesn’t actually
have to start up new copies of interpreters. Note, however, that by doing this, the process of
coding and developing for these environments has become more complex.

Unfortunately, the problem of starting up the Perl interpreters themselves is not the only oner-
ous problem regarding the amount of computing time that is takes to retrieve the proper data.
There is also the issue of actually doing the searches themselves. To contemplate this, imagine
doing several hundred “Find” processes on your machine at once.

Sadly, the problem of all this working being done on the server does not have a solution. One
common method to alleviate this congestion on the server is by splitting up requests to mul-
tiple servers—making them all appear to be the same server. Note again, however, that this
makes the process of programming and maintaining this environment much more complicated.

In addition to computational intensiveness, you should consider that because the server must
keep track of all state, it may also need to have large amounts of storage space to store the state
information—especially if the search that the user is doing needs to be maintained across
sessions.

These scalability problems are not only problematic for the programmer, but also to the
Webmasters and system administrators who are faced with the burdensome task of keeping
these machines running at reasonable speeds, and keeping them from running out of disk
space.

Round Trip Server Transactions
Another problem with server-side data binding is that a round trip to the server must be done
for basically everything that the user requests. Take a look at the flow of information when a
user does a search of a catalog that you have placed on your web site via server-side data bind-
ing.

Suppose, for example, that you have a stereo shop and the user wants to search for three differ-
ent types of amplifiers: monaural, stereo, and surround.

1. The user enters the pertinent keywords at the stereo shop search screen to search for
monaural amplifiers. The browser sends the search information to the server.

2. The data for monaural amplifiers is sent back to the browser.

3. The user enters the keywords to search for stereo amplifiers and executes the search.
The browser again sends the search information to the server.

4. The data for stereo amplifiers is sent back to the browser.

5. The user enters the keywords to search for surround amplifiers and executes the search.
The browser again sends the search information to the server.

6. The data for surround amplifiers is sent the browser.

237

11

IV
Part

Ch

By taking a close look at the process that occurs in the preceding example, you can see that
three round trips to the server were required for these searches. In fact, a round trip is re-
quired every time a new search is executed.

In addition to the server scalability problems associated with this process, it is also important
to consider the network implications. Because a round trip occurs for each search, the network
becomes considerably more congested than it needs to be.

One possible solution to this problem is to do all the searches at once; however, this solution
has multiple problems. The first problem to overcome is the display of multiple sets of data to
the user if all the searches are done at once. Should all the data be intertwined within each
other, or should the data be broken up into second pieces?

Secondly, and more importantly, the user may not know at the time of the first search that they
want to do multiple searches. Why should the user be forced to think of ways to make his
searches more resource friendly when the user is just there for the information?

Partial Data Retrieval
Many of the problems related to placing so much responsibility on the server have already
been considered. High server responsibility causes network congestion problems, slows down
the server, and forces the server to keep track of the state of the client.

The last point is more problematic than is immediately obvious. Quite often the entire results
of the data that the user has asked for are not contained in the document.

The results are not contained in the document because browsers would be overwhelmed with
data. Users would also be overwhelmed if 100 pages of results were shown at once, forcing
them to scroll over a huge area.

To alleviate this problem, most web sites that deal with data retrieval break up the data that is
delivered into sections. Here are a few examples:

■ The most common sites that use the paradigm of dividing results into sections are web
search engines. If you use your browser on one of the more common search engines that
index the entire web to search for something common, the engine will return hundreds,
if not thousands, of results. You don’t get all the results at once, instead, a subset of the
data that you are looking for—probably between 10 and 100 matches—displays.

■ Another common set of sites that run into this situation are online catalogs. When you
are searching for laptop computers, for instance, you might ask for all laptop computers
that cost between one thousand and four thousand dollars. On most larger online
catalogs, this would return over a hundred laptops, and usually only 25 or so are
provided at once.

■ A final example are news sites, where you can search through archived news stories
using keywords to specify what you want to retrieve. If you do a search of common sorts
of stories, you will most likely only receive a subset of the stories at a time.

Downsides to Server-Side Data Binding

238 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

This process of breaking up the data into chunks on the server causes all sorts of problems.
First, it is more complex from the programming perspective. Second, it forces the server to
keep track of even more user state. The server must remember which set of data the user is
currently viewing.

Finally, this breaking up of data into sections causes problems for the user. Say you did a
search on a site that produced matches pretty close to the item you wanted, but the server
didn’t let you do quite as fine a search as you wanted.

Perhaps you are only interested in laptops that use lithium-ion batteries but catalog search
engines wouldn’t let you add that to the search criteria. Instead, you want to use the find fea-
ture of your browser to go to each of the results on the page that contain the phrase “lithium-
ion.”

Unfortunately for the user, they will have to go through a long and arduous process to get at
the data that they want, because they will have to get the subset, do a find, get the next subset,
do a find, and so on.

Client-Side HTML Data Binding Solutions
Most of the problems that were discussed in the previous sections are related to the fact that
everything is stored on the server. Wouldn’t it be nice if large pieces of this process were off-
loaded to the client?

Client-side data binding allows this off-loading to be done. In fact, client-side data binding pro-
vides several advantages that directly relieve the problems discussed over the last few sections:

■ Reduction in round trips to the server—Because most or all the state is stored on
the client, the only round trips to the server are for the retrieval of the data itself.

■ No need to divide data into sections—Because the client only needs to download the
data that is needed at any given time and can get new data easily, there is no need to
divide the data into sections that are downloaded en masse.

■ Scalability—Because the bulk of the work is done on the client side, much less work
needs to be done on the server. This benefits the scalablity of the server a great deal.

Client-side HTML data binding enables you to do just that. It enables you to pick a source for
the data that will be placed on the web page, and then automatically places the data from the
data source on the web page.

A huge advantage of binding on the client side is that client-side binding only requires the new
data that is to be placed on the page to be transmitted to the browser. This is because with
client-side data binding, the data is bound only to certain elements on the page. With CGI, on
the other hand, an entire new page must be downloaded when the data lookup is done.

The use of client-side binding is much less complex, because the web server needs only be
used to send documents. The client can communicate directly to a database for the data it
needs, use a middleware service such as ODBC, or load a file containing the data from the web
server itself.

239

11

IV
Part

Ch

By reducing the workload on the web server, the entire process is much more scalable. The
web server is much less inundated with work, because the process of figuring out what data is
needed is computed somewhere else—perhaps on a relational database system or on the user’s
client machine. In any case, client-side binding enables the the web server to be used for its
main purpose: serving web documents.

In addition, client-side data binding significantly reduces the number of round trips required to
the server. The web page can, for instance, download the index to a catalog to the web browser.
This index is not immediately displayed, but instead shown a bit at a time by the elements on
the page, controlled by a script. This means that data can be dynamically viewed and navigated
without ever contacting the server again. By reducing round trips to the server, the network
impact of data binding is also reduced drastically.

By being able to download data, in a sense “caching” it locally to be viewed later, the web page
can download all the data it needs, rather than breaking it down into sections. This means that
the state of what is being viewed can be kept on the client rather than the server, saving pre-
cious server resources.

The server resources saved can be broad-ranging. Because the searching is not done on the
server, that processor-intensive computation is off-loaded from the server. In addition, the
server does not need to keep track of much state information of the client, and therefore does
not need to cache data or spend processor time figuring out what subset the user needs to view
next.

Because all the data is handled locally, the user also can (assuming the web page will let them)
dynamically decide how much data to show at once. This means that, for the sake of easy view-
ing, the user can choose to have only 10 or 20 items viewed at the same time during most of
their interactions with the data. Alternatively, the user could also have the option of showing all
the data at the same time.

All these advantages are important, but the most obvious one is speed. One of the largest com-
plaints about the web is how slow it is. If more of the intelligence for data retrieval and search-
ing can be placed on the client, operations will tend to execute quicker, and the user will have a
more pleasant browsing experience.

HTML Data Binding Extensions
HTML data binding enables you to semi-automatically present data to the user in various
places on the document via data bound elements. This implementation is quite flexible and for
the most part quite simple to program.

You, for example, can define a element on a page to be bound to the “Product Name”
field in your data and another element to be bound to the “Price” field in your data.
This would cause the Price and Product Name to automatically be placed into those elements
via data binding.

HTML Data Binding Extensions

240 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

HTML data binding has an important requirement, however, in addition to it being used on a
client that supports it. The requirement is that the data being retrieved is available in tabular
form.

Tabular form means that the data can be represented as columns and rows and that each col-
umn can be accessed one at a time. This form is used because it is easy to work with and maps
naturally onto the types of data access normally done on the web.

It’s important not to confuse the concept of data being in tabular form and the Tabular
Data Control. Tabular form is a general term referring to the type of data that is being used,

while the Tabular Data Control (which will be discussed in the next chapter) is a specific ActiveX Control
that can be used with data binding. ■

This sounds a bit abstract, but if you look at the following concrete example, you’ll gain a better
understanding of tabular data. The following table contains data representing the prices of
various types of furniture at a furniture shop, along with the item’s price and color:

Table 11.1

Type Color Price

sofa green $600

bed white $250

desk woodgrain $350

chair black $75

table red $375

recliner plaid $425

The choice of using a table to represent this data is a good way to look at whether data is tabu-
lar. Note that each column can be read down and you can check the status of each item with
respect to the type of data that is being stored. For instance, all the colors are stored in the
color column.

Each of the columns represents what is known as a field of the database. A field indicates what
is represented in each column of the table. Therefore, the first field of this data is the “type”
field, the second is the “color” field, and finally, the third is the “price” field.

In much the same way, the entire status for one item can be read at once by grabbing a row
from the table. Each row is often referred to by programmers as a record, because it defines a
complete record of that item’s data.

In general, if the data you are representing can fit into a table such as this one, it is a good
candidate for tabular data. If, on the other hand, your data does not fit well into this paradigm,
you might want to consider other options, such as reverting back to server-side data binding,
or perhaps using an ActiveX object or Java applet to access the data.

N O T E

241

11

IV
Part

Ch

The essence of HTML data binding can be broken down into two key concepts:

■ Data consumers—The HTML elements that retrieve and display the desired data.

■ Data sources—The origin of the data displayed by the data consumers.

A data source might be as complicated as fetching data via SQL calls to a relational database, or
as simple as grabbing a text file that contains tabular data.

The process by which data consumers are attached to data sources is known as binding. This
binding is specified in the HTML file that you write, by using special syntax developed specifi-
cally for HTML data binding.

Take a quick look at an example. The following code defines a data source and a data con-
sumer:

<OBJECT id=”furniture”
 classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83"
 <PARAM name=”DataURL” value=”furniture.txt”>
</OBJECT>

The data source is defined by the <OBJECT> element. In this case, the Tabular Data Control
data source object is being used. Don’t worry about understanding most of the parameters to
the <OBJECT> right now—Data Source Objects will be considered in detail in the next chapter.
The important thing to note at this point is that the <OBJECT> element is defining a data
source and assigning it the ID “furniture.”

For an HTML element to function as a data consumer and to bind to a data source, it must be
able to specify two important aspects of its data-oriented nature. The HTML element must first
be able to specify the data source that is attached to it. Second, the element must be able to
specify which column of the data source to use. The HTML for specifying these properties is
discussed in detail later in this chapter.

In the previous example, the data consumer is the element. In this case, the data
source that is being attached to it is the “furniture” data source (ignore the “#” for now, it will
be discussed later). The column of the data source that will be used is the “type” column. This
process of data consumer binding will be covered in detail in the sections that follow.

Single- and Repeated-Table Valued Data Consumers
So far, this chapter has treated all data consumers (HTML elements that are set up to receive
data from a data source) as entities of a singular type. It is true that all data consumers receive
data, but two different types of data consumers exist: single-valued and repeated-table valued.

Single-valued data consumers retrieve one value at a time from the current row at which the
data source is looking. This type of binding is known as value binding. The value retrieved
represents the value of one field of the current row. So, if you were on the first row in table 11.1
and you were bound to the “type” field, the value would be “soft.”

HTML Data Binding Extensions

242 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

The second type of data consumer is the repeated-table type. This type of data consumer dis-
plays the entire contents of the tabular data at once. Each field does not need to be bound to a
specific element, because the data that is retrieved is treated as a whole. This type of binding is
known as set binding.

To bind HTML elements to data values, you need to have some way of specifying the data
source and what column of that data source to use. The manner in which HTML elements are
bound to data values is accomplished by setting HTML attributes of the elements that you want
to be bound. There are three new attributes that enable this binding to be done:

■ DATASRC—Specifies what data source to bind to.

■ DATAFLD—Specifies what part of the data to bind to.

■ DATAPAGESIZE—Specifies the number of rows to insert when using repeated-table
binding.

■ DATAFORMATAS—Specifies format for which the bound data is displayed (ASCII,
HTML, raw).

The DATASRC Attribute
The DATASRC attribute enables you to specify the data source to which you want to bind. In
other words, this attribute tells you where the data you will be binding to will come from. As
previously discussed, the data can be bound to a single value (via value binding), or it can be
bound to an entire table (via set binding).

The DATASRC attribute takes an id as its value. The id that it takes should be the id of a data
source object that has been defined elsewhere in the HTML document. The id that is refer-
enced must be unique on the page.

When you use the DATASRC attribute to specify set binding to bind to an entire table, you
have no control over the rows that will display. All the subelements of the table are repeated
until the entire data set from the data source displays.

Take a look at an example:

<TABLE DATASRC=”#furniture”>
</TABLE>

The DATASRC attribute binds this table to the data source object specified by the “#furniture”
id. This data source object has been specified at some other point in the HTML file. Data
Source Objects are explored in Chapter 12, “Using Data Source Objects.”

The DATASRC attribute can be used with the following HTML elements: TABLE, SPAN, DIV,
OBJECT, PARAM, INPUT, SELECT, TEXTAREA, IMG, MARQUEE, A, FRAME, IFRAME, and
BUTTON.

243

11

IV
Part

Ch

DATAFLD
After you’ve specified where the data will be coming from via the DATASRC attribute, you
must specify to what part of the data you want to bind. The DATAFLD attribute enables you to
complete this task.

The DATAFLD attribute enables you to specify the column from the tabular data that you want
to bind to the specified HTML element. This column represents a field that is then found in
each row (or record).

The DATAFLD attribute cannot be set by itself. A DATASRC attribute must be specified. This
makes sense, because it isn’t very logical to try to bind to data without specifying from where it
will be coming. The DATASRC attribute can be set either in the element that the DATAFLD
attribute is contained in, or in its parents.

The value specified with the DATAFLD attribute is the name of the table column to which you
will bind. Therefore, in the tabular data example in table 11.1, you would bind to the first col-
umn of the tabular data by setting the DATAFLD attribute to “type.”

Take a look at an example by extending the code from the previous section on DATASRC
attributes:

<TABLE DATASRC=”#furniture”>
 <TR>
 <TD>

 </TD>
 </TR>
</TABLE>

The additional code specifies the display of only one column from the tabular data being sup-
plied from the data source object: the “type” column.

Because you are specifying this data field attribute within a table, it is going to be a set, or
repeating type of data binding. By default, all the rows from the tabular data will be inserted
into the table. The DATAPAGESIZE attribute (discussed in the next section), however, allows
you to limit the number of rows to insert.

If you want to bind to a single column and a single value at a time, you would use the following
syntax:

Instead of showing the entire contents of the tabular data at once, you now get only one field
from one row at a time bound to one HTML element on the page. You can then move through
the rows of the tabular data by accessing the methods of the Data Source Object (see Chap-
ter 12).

The DATAFLD objects can be used with the following HTML elements: SPAN, DIV, OBJECT,
PARAM, INPUT, SELECT, TEXTAREA, IMG, MARQUEE, A, FRAME, IFRAME, BUTTON,
and LABEL.

HTML Data Binding Extensions

244 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

DATAPAGESIZE
The DATAPAGESIZE attribute enables you to limit the number of rows that are inserted from
the Data Source Object when repeated-table binding is used. If the DATAPAGESIZE attribute
is not specified, all the rows available from the Data Source Object are inserted into the table.

The DATAPAGESIZE attribute is always used in conjunction with the DATASRC attribute. If,
for example, you wanted to specify that 10 rows should be placed in the table from the “#furni-
ture” data source, you would use the following code:

<TABLE DATASRC=”#furniture” DATAPAGESIZE=10>

DATAFORMATAS
The final HTML data binding attribute that can be set is the DATAFORMATAS attribute. The
DATAFORMATAS attribute enables you to specify just how the data that is coming from the
Data Source Object will be represented.

The DATAFORMATAS attribute is optional. If it is not specified, the default data format is
ASCII text. The importance of this attribute depends on whether you will be dealing with data
that is in a special format or not. If you will just be working with standard ASCII text, you can
ignore this attribute for the most part; however, it is worth keeping in mind in case you ever do
need to work with data in one of the special formats.

The formats that can be specified by the DATAFORMATAS attribute are as follows:

■ text—Specifies that the data is ASCII text. This type of data can be displayed with no
conversions.

■ html—Specifies that the data is in HTML. This informs the browser that the HTML data
may need to be parsed before being displayed.

■ none—Specifies that the data is in raw format. This might be used if you were bringing
in data, such as long integers.

The DATAFORMATAS attribute is used with the following HTML elements: SPAN, DIV,
MARQUEE, BUTTON, and LABEL.

Implementing the Data Binding Attributes
All the data binding attribute extensions to HTML have been covered. You’ve learned a lot of
concepts and syntax, so now take a look at a real world example.

In this example, you’ll take tabular data, previously discussed, and display it as a repeating
table inside the web page. This example shows how straightforward it is to generate data dy-
namically via HTML data binding.

First, you’ll need to define the data that will be used. For this example, data describing mer-
chandise from a furniture store will be used. There are three aspects for each piece of furniture
that will be provided: the type of furniture, its color, and its price. The format that is used to
define this data is quite straightforward, but that is discussed in detail in the next chapter.

245

11

IV
Part

Ch

Here is the furniture file. Save this data as furniture.txt:

type,color,price:INT
sofa,green,300
bed,white,850
desk,woodgrain,350
chair,black,475
table,red, 175
recliner,plaid,425

Listing 11.1 shows the HTML document for the example (the file name is ch11ex01.htm):

Listing 11.1 Repeated-Table Binding

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Chapter 11, Example 1
05. </TITLE>
06. </HEAD>
07.
08. <BODY>
09.
10. <OBJECT id=”furniture”
11. classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83"
12. border=”0"
13. width=”0"
14. height=”0">
15. <PARAM name=”DataURL” value=”furniture.txt”>
16. <PARAM name=”UseHeader” value=”True”>
17. </OBJECT>
18.
19. <TABLE DATASRC=”#furniture” border=1>
20. <TR>
21. <TD>
22.
23. </TD>
24. <TD>
25.
26. </TD>
27. <TD>
28.
29. </TD>
30.
31. </TR>
32. </TABLE>
33.
34. </BODY>
35. </HTML>

HTML Data Binding Extensions

246 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

The output for the example in listing 11.1 is shown in figure 11.1.

FIG. 11.1
Output from repeated-
table binding.

All the rows from the tabular data file supplied have automatically been inserted into the table.
Note that you did not have to add anything else to the table definition to have it automatically
filled in by repeated-table binding.

The table code that is used here with DATASRC (line 19) and DATAFLD (lines 22, 25, and 28)
was discussed earlier in the chapter. The additional code is the <OBJECT> element on line 10.
This element specifies the data source file that is used for data binding. (Data Source Objects
are covered in detail in the next chapter.)

The <OBJECT> Data Source Object will contine to be used to keep things from getting too
confusing. Just keep in mind that this data source object returns the furniture data in tabular
form on a row by row basis.

One interesting thing to note that is a bit strange is that when the Data Source Object is de-
fined it is named “furniture,” but when it is referenced in the DATASRC attribute it is listed as
“#furniture.”

This may seem a bit strange, and in fact it is. The addition of the pound sign is just Dynamic
HTML’s syntactic way of saying, “This is special, this is a data source object.” Like all technolo-
gies, Dynamic HTML has its quirks. Don’t sweat it, just remember to put a pound sign (‘#’) in
front of Data Source Objects when you’re referring to them in DATASRC attributes.

247

11

IV
Part

Ch

Data Consumers
Now that you’ve learned the attributes that Dynamic HTML has added for data binding, you
are ready to take a closer look at a few of the HTML elements with which these attributes can
be used.

These elements are known as data consumers. Data consumers were discussed before. They
are the HTML elements that can receive data from Data Source Objects via binding.

DIV
<DIV> tags are used in data binding to display a block of plain text or HTML code. If you do not
specify the DATAFORMATAS attribute, the data always displays as pure ASCII text.

If, however, you want to display the data as HTML code, you must set the data format. This is
done by setting the DATAFORMATAS attribute to “html.”

If the underlying text changes in the Data Source Object to which the <DIV> element is bound,
then the contents of the <DIV> element will change.

SPAN
The tag is used similar the <DIV> tag except that it is more limited in the content that
it can show. It is best used for straightforward text.

The SPAN element is limited in that it cannot include HTML “block” tags. If you need to in-
clude this type of element, you should probably use a <DIV> element, because SPAN is meant
mainly for limited amounts of text.

Much like the <DIV> tag, the tag can contain ASCII text or HTML code. If you are
using HTML, set DATAFORMATAS to the value “html.” Also similar to the <DIV> tag, when
the Data Source Object’s row value changes, the value of the text in the SPAN element
changes.

SPAN binds data in a single-value manner. Listing 11.2 modifies the code from listing 11.1 to
display only one value at a time by using just a SPAN element. Save this file as ch11ex02.htm:

Listing 11.2 Single-Value Binding

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Chapter 11, Example 2
05. </TITLE>
06. </HEAD>
07.
08. <BODY>
09.
10. <OBJECT id=”furniture”
11. classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83"

Data Consumers

continues

248 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

12. border=”0"
13. width=”0"
14. height=”0">
15. <PARAM name=”DataURL” value=”furniture.txt”>
16. <PARAM name=”UseHeader” value=”True”>
17. </OBJECT>
18.
19. <P>
20. <P>
21. <P>
22.
23. </BODY>
24. </HTML>

The output for the HTML code in listing 11.2 appears in figure 11.2.

Listing 11.2 Continued

FIG. 11.2
Output from single-
value binding example
(listing 11.2).

The main thing to pay attention to in this example is that the only lines of HTML displayed are
contained within the SPAN element. This element is dynamically generated by loading the “type”
column from the current row of the Data Source Object. In this instance, the Data Source Object
is “furniture” and represents the tabular data from table 11.1 earlier in the chapter.

SELECT
The <SELECT> tag in HTML enables the user to make a choice. It is visually identical to a user
interface element commonly referred to as a list box. The value of this SELECT element can be
bound to a column value from a Data Source Object.

249

11

IV
Part

Ch

The syntax of the SELECT element is actually quite straightforward with respect to data bind-
ing. Just add the DATASRC and DATAFLD attributes to the SELECT element. Then add the
options for the SELECT element, making sure that all the possible values that could be loaded
from the data source are represented as valid options:

<SELECT DATASRC=”#furniture” DATAFLD=”type”>
 <OPTION>sofa
 <OPTION>bed
 <OPTION>desk
 <OPTION>chair
 <OPTION>table
 <OPTION>recliner
</SELECT>

MARQUEE
A MARQUEE element is simply an area of text that scrolls by automatically. MARQUEE ele-
ments are often used for data that changes on a regular basis that the web author wants to
provide to the user in an abbreviated form.

MARQUEE elements can have their value bound to a Data Source Object, which then provides
the text that will be shown in a scrolling marquee.

Much like the <DIV> and tags, both raw ASCII text and HTML can be bound from a
data source object into a MARQUEE element, depending on whether the DATAFORMATAS
attribute is set to “html.”

Normally when MARQUEE elements are used, text is placed between the <MARQUEE> and
</MARQUEE> tags in the HTML file. This text is what then scrolls by in the marquee. If,
however, data binding is being used, this text is ignored and the data from the Data Source
Object is used instead.

IMG
Text isn’t the only data that can be used with Dynamic HTML data binding. Images can also be
bound to a data source. The actual image data, however, is not retrieved from the Data Source
Object.

Instead of the actual image, an IMG element is used and bound to the Data Source Object. The
value that it retrieves is used as an URL to seek out the image to be displayed. That image is
then loaded via the URL and displayed in the browser.

For instance, say you wanted to associate an image with each piece of furniture in the example
from the previous sections. You could do this by providing an URL that points to an image and
bind this to an IMG tag on your page.

APPLET
The capability to load images dynamically via data binding is a pretty powerful concept; how-
ever, the capability to do data binding via the <APPLET> tag takes dynamic image loading one

Data Consumers

250 Chapter 11 Introduction to Data Binding

http://www.quecorp.com

step further by actually allowing parameters for executable program content to be dynamically
specified via data binding.

Data binding with the <APPLET> tag is used by specifying DATASRC and DATAFLD attributes
within the parameter definitions as defined in the following syntax:

<APPLET applet-info
 <PARAM NAME=”login”
 VALUE=””
 DATASRC=”#userinfo”
 DATAFLD=”user_login”
 >
</APPLET>

This code causes the login parameter to be specified via data binding. The value of the “login”
parameter is loaded from the “user_login” column of the row of the tabular data being provided
by the “userinfo” Data Source Object.

You, for instance, might have a 3D applet that allowed the user to move around the piece of
furniture they are looking at in three dimensions. Binding via the <APPLET> tag enables the
parameters to that applet (such as which 3D model to view) to be retrieved from a Data Source
Object.

From Here…
This chapter introduced you to the capabilities and the syntax of HTML data binding. The
details of where that data comes from, however, have not been presented. You will learn about
this in:

■ Chapter 12, “Using Data Source Objects”—Here, you will learn about the use of data
source objects and how they are used with the HTML data binding extensions.

251

12

IV
Part

Ch

C

12C H A P T E R

Using Data Source
Objects

hapter 11, “Introduction to Data Binding,” covered the
aspects of Dynamic HTML that enable you to bind data
information retrieved remotely to elements on an HTML
page.

Because the data displayed is not included as part of the
HTML code itself or the script associated with the page,
nor is it generated by the web server, it must be generated
by something other than these components.

The source of the data used in HTML data binding is
accessed through what is known as a Data Source Object.
A Data Source Object is an object that contains methods
that enable the data bound control to retrieve data.

These Data Source Objects are, for the most part, generic
ActiveX objects. What makes them special is that they
support interfaces that the HTML data binding extensions
look for to collect the data from them.

By the end of this chapter you should have a firm grasp on
the fundamentals of the use of Data Source Objects, spe-
cifically the Tabular Data Control. ■

Understanding Data Source
Objects

Learn the usage and capabilities of
Data Source Objects and how they
fit into Dynamic HTML.

Tabular Data Control

Explore the intricacies of the Tabu-
lar Data Control, which enables data
binding using only data files stored
on the server with no dedicated
database server necessary.

Sorting

Learn how to implement one of the
most fundamental operations of
data—sorting. The Tabular Data
Control includes simple, yet power-
ful, methods by which to sort data.
It can sort in either ascending or
descending order based on any
column in the data.

252 Chapter 12 Using Data Source Objects

http://www.quecorp.com

Data Source Objects (DSOs)
When Microsoft was developing Dynamic HTML, an obvious addition to current HTML was
client-side data binding. The first thing to consider was how the HTML elements would be
extended to support data binding. Luckily, this was a fairly straightforward process.

Because the elements that would be bound to the data were already defined, the aspects of how
to extend them came down to two decisions:

How to extend the elements

Which elements to extend with the data binding capability

The decisions related to how to supply that data were much more difficult, however. HTML is
quite client-centric and does not lend itself easily to the supplying of data remotely. Therefore,
Microsoft had to define a standard method of supplying this data from the server to the client.

Microsoft’s solution to this dilemma was to introduce a new class of object to Dynamic HTML
that supports the sending of data to data-bound HTML elements: the Data Source Object.

The Data Source Object is an embedded object in the HTML page that is given the parameters
for where the data will be coming from and the method by which it should be retrieved.

Data Source Object Responsibilities
Data Source Objects are responsible for the specification of four major aspects of the data
retrieval, as follows:

■ The definition and implementation of the data transport mechanism

■ The method used to retrieve requested data

■ The manipulation of retrieved data

■ The object model used for script access

Specifying the Data Transport Mechanism The Data Source Object is responsible for the
definition and implementation of the data transport mechanism by which the data will be sent
to the browser. This transport mechanism may be completely independent of the transport by
which the page was downloaded to the browser.

One common data transport mechanism is HTTP (Hypertext Transfer Protocol). HTTP pro-
vides a standard communication protocol that enables web browsers to request information
(usually URL requests) and web servers to transfer information (usually HTML web pages) to
each other.

Other common data transport mechanisms exist. NNTP (Network News Transfer Protocol),
for instance, is the standard transport protocol for sending and receiving Usenet news. If you
have a news reader on your PC, such as Microsoft’s Internet News Reader, you will have to
specify a news server through which to receive news. Your news reader then speaks to the
news server through NNTP.

253

12

IV
Part

Ch

The sending and receiving of Internet e-mail has a standard data transport mechanism as well.
The protocol that it uses is known as SMTP (Simple Mail Transfer Protocol). Whenever your
PC-based e-mail client, such as Eudora, sends or receives e-mail, it uses SMTP.

Just like Usenet news or e-mail, there are protocols for sending tabular kinds of data over the
web. The applications providing the data could range from desktop database programs to
advanced SQL relational databases.

Unfortunately, most databases use a proprietary protocol to communicate over the network.
The transport protocol used to communicate with an Oracle database, for example, will be
completely different than the protocol used to communicate with a Microsoft SQL server data-
base.

Due to these differences in communication protocols, Data Source Objects are given freedom
to communicate with the data source via any method desired. For instance, the two DSOs that
are included in IE 4.0 use completely different methods of retrieving data. The Tabular Data
Control retrieves a text file containing data from the web server. On the other hand, the Re-
mote Data Service uses ODBC to connect to database servers to retrieve data.

The capability to use wildly different transport protocols is a positive attribute because it does
not lock Data Source Objects into communicating with only one class of data providers. No
matter what the protocol, so long as it can be communicated over the Internet, Data Source
Objects can deal with it.

This protocol independence means that Data Source Objects are not limited to the standard
sorts of ways to retrieve data. Many programmers are accustomed to stores of data residing
exclusively in databases and will expect all Data Source Objects to be associated with database
programs.

However, this is not the case; the provider of the data can be almost anything. This flexibility is
taken to an extreme with the Tabular Data Control (TDC), which does not deal with an actual
running database program over the web. The TDC, instead, deals exclusively with raw files
that it downloads via HTTP.

This may sound strange, but makes quite a bit of sense. If the data that you will be binding to is
for the most part static, why do you need to have a separate database program providing it?

Specifying the Data Retrieval Method The Data Source Object is where the user specifies
the method to retrieve the data that is being requested. This may sound suspiciously like the
transport protocol (data transport mechanism) used, but there is an important and subtle
difference.

The protocol used to transfer the data is usually transparent to the user. The protocol, for in-
stance, used to transfer tables from a Sybase SQL Server is known as Tds; however, there is
rarely any reason for the user of a Data Source Object that connects to a Sybase SQL Server to
know that sort of information. From the user’s perspective, the protocol used to transfer the
data is all hidden behind the scenes and handled by the server and the driver.

Data Source Objects (DSOs)

254 Chapter 12 Using Data Source Objects

http://www.quecorp.com

On the other hand, the specification of the method to retrieve the data is the description from
the client to the data source on exactly what data the client page is interested. The methods by
which this is accomplished will vary widely from Data Source Object to Data Source Object.
The Tabular Data Control, for example, accesses data through a text file on the web server,
whereas the Remote Data Service accesses data via ODBC. The Tabular Data Control will be
described later in this chapter. The Remote Data Service (usually used with SQL relational
database servers) is beyond the scope of this book, but you can find information on RDS in the
IE 4.0 documentation.

Suppose, for example, that you are connecting to the aforementioned Sybase SQL Server. You
may have to supply many different pieces of information to the Data Source Object before you
can retrieve information. Here’s a list of the parameters that may be required:

■ The name of the server

■ The Internet address or qualified name of the remote machine that is running the server

■ The TCP/IP port that the server is currently running on the remote machine

■ The name of the database on the server on which you want to execute your query

■ The SQL query to execute on the server

These data parameters are required due to the nature of relational database servers that pro-
cess SQL queries. For robust, client-server applications, this kind of power and flexibility is
required. Programmers who are accustomed to dealing with these types of servers will expect
to have to provide this information.

Moreover, the syntax of an SQL query itself can be quite complicated. SQL syntax is a way to
access fields from tabular data with a syntax that tries to approximate natural language—with
varying degrees of success. The following query, for instance, selects all the “f_type” fields
from an SQL table named “FURNITURE” where the furniture type has a price less than 500
dollars:

SELECT f_type FROM FURNITURE WHERE PRICE < 500

Even though this is a simple example of an SQL query, you can see how this method of specify-
ing data to retrieve can become quite unwieldy. This is not a negative comment on SQL, just a
realization that in some cases it will be the equivalent of using an industrial power tool when
only a screwdriver is required.

Because Dynamic HTML does not require Data Source Objects to have one method of specify-
ing the way to retrieve the desired data, it is much more flexible in this regard. Specifying the
data, for instance, that you want by using the Tabular Data Control is much simpler than using
a Data Source Object that connects to an SQL server.

To specify the source of the data for the Tabular Data Control, for example, you have to specify
only one parameter. You must specify from where the data will be coming. This parameter is
given as an URL and the file that contains the tabular data will be downloaded to the Data

255

12

IV
Part

Ch

Source Object on the client. For instance, you might use the following URL to point to the data
file on your machine:

http://yourmachine.com/datafile.txt

The capability to retrieve this sort of tabular data with such simple syntax and without the
necessity of having a database server is actually more important than it may seem at first. It is a
great example of how simplicity can be quite powerful.

You might want to prototype a site using text file sample data and not worry about the vagaries
associated with SQL servers, for instance. SQL servers usually require quite a bit of resources
and expertise in their administration; however, often all that is required is to read rows of tabu-
lar data that may change on a regular basis. In this case, the Tabular Data Control can be used
with files residing on the server, saving resources and programmer complexity. And, if you
later move to a more powerful data access method, the only code you will need to change in
your client is the specification of the Data Source Object itself.

Specifying the Manipulation of Requested Data The Data Source Object is responsible for
all manipulations that occur to the data. What is meant by manipulations? Quite often when
accessing data, you might want to have it presented in a different form than it was delivered to
you originally.

A good example of manipulating the data is doing a sort on the results returned by the Data
Source Object. When you first receive the data it may or may not be sorted, depending on
which Data Source Object you are using.

Most Data Source Objects will define methods that enable you to sort on various sections of
the result that has been returned. Suppose, for example, that you have a database that contains
types, colors, and prices of various tropical fish. The following table gives an example of the
type of data that might appear in this database:

Table 13.1 Tropical Fish Data from the Database

Type Color Price

Damsel Red 6.95

Shark Gray 22.95

Eel Black 18.95

Rockfish Blue 28.95

Ray Gray 54.95

If you wanted to sort the data, you would use the methods of the Data Source Object relevant
to sorting. Most Data Source Objects would, at the very least, enable you to sort in ascending
and descending order based upon one of the fields in the result. Therefore, you would be able
to sort based on the type, color, or price of the tropical fish.

Data Source Objects (DSOs)

256 Chapter 12 Using Data Source Objects

http://www.quecorp.com

In addition, Data Source Objects specify the filtering of any data they contain. Filtering is im-
portant if you want to specify a subset of the data based on certain criteria. You might filter the
tropical fish data, for instance, by returning the subset of the fish types that all have the value
gray for their color (for the example data, this would be the Shark and the Ray).

Specifying the Object Model for Script Access The Data Source Object specifies the object
model that is used for script access. The importance of object models is discussed in Chapter 6,
“Dynamic HTML Object Model.”

In a nutshell, the object model consists of the properties, methods, events, and objects that a
scripting language can use to access the material it encapsulates.

For a Data Source Object, the object model specifies all the ways in which the user can interact
with the DSO. All sorting and filtering capabilities, for instance, are usually exposed through
properties that are set, followed by methods that execute the changes.

Much like the manipulations that can be done on the data via the Data Source Object, the ob-
ject model that is exposed and supported by the Data Source Object is usually dependent on
decisions made by the people who programmed the Data Source Object. This means that meth-
ods used for filtering and sorting may very well change from Data Source Object to Data
Source Object.

A basic level of functionality, however, must be supported. This functionality is specified by
Microsoft’s OLE-DB API, which is a bare-bones API that requires Data Source Objects to pro-
vide a minimum level of functionality. You can find more information on the OLE-DB API at
http://www.microsoft.com/oledb/default.htm.

The fact that Data Source Objects are required to implement the OLE-DB API specification
shows an important and limiting aspect to the use of Data Source Objects. Data Source Objects
are Microsoft Component Object Model (COM) objects, more commonly referred to as
ActiveX objects.

Data Source Objects are ActiveX objects, which is both an advantage and a disadvantage
depending on your perspective. If you are a proponent of ActiveX, or are not particularly
concerned about cross-platform capabilities or security, the reliance on ActiveX may not be
a stumbling block.

DSO Cross-Platform and Language Compatibility
Although Data Source Objects are ActiveX objects, Microsoft is certainly going out of its way to
make sure that Data Source Objects can be written in a variety of languages.

Microsoft will be providing Data Source Objects written in Java using JavaBeans (which are
automatically exposed as ActiveX objects) or through Visual Basic or Visual C++. Languages
that can implement Data Source Objects have no restrictions other than that they must imple-
ment the required COM interface to create the ActiveX object.

257

12

IV
Part

Ch

If cross-platform capabilities are important to you, you should seriously consider using and
implementing Data Source Objects with Java. Unfortunately, ActiveX objects written in C++ and
Visual Basic are tied to the platform on which they were compiled.

ActiveX objects written in Java, however, can be used on any platform that supports ActiveX.
Microsoft has currently announced plans for Internet Explorer 4.0 with ActiveX support for
Windows, Macintosh, and many UNIX platforms. This support will cover most of the important
current platforms, lessening the fears many have about cross-platform issues.

Tabular Data Control Basics
The Tabular Data Control (TDC) is a straightforward Data Source Object that ships with
Internet Explorer 4.0. The TDC has the distinct advantage of not requiring a separate server
(such as a relational database) to provide data to it.

Instead of using a remote server to perform queries, the Tabular Data Control downloads data
files via HTTP (or directly if the file is on the local machine), then extracts the needed data
itself. Several advantages to this method of data access are:

■ It does not require a separate data access server.

■ Because the file is transmitted via the web server via standard HTTP methods, no
modifications to the web server are required.

■ The processing time required to manipulate the data into forms necessary for displaying
via data binding is done on the client instead of the server, resulting in a great reduction
in server load.

■ Fewer round trips over the network are necessary than if the data had been returned
from a database server because the Tabular Data Control downloads the entire data file
at once.

Tabular Data Control does have a few downsides.

■ Because the entire file is downloaded to the client, more resources are required on the
client side.

■ Due to the loading of the entire file, more aggregate network bandwidth might be used
than if the data searching was done on the server.

■ The manipulations and queries that can be performed on the data are severely limited
because the Tabular Data Control Data Source Object is not an advanced database
engine.

■ The Tabular Data Control is strictly a “read-only” form of data access. If you want to write
data back to the server in a standard client/server type of process, the Tabular Data
Control is not sufficient.

Tabular Data Control Basics

258 Chapter 12 Using Data Source Objects

http://www.quecorp.com

For these reasons, the choice of whether to use the Tabular Data Control depends on the sim-
plicity of the actions that you want to perform with it. If your data access task falls into many of
the following categories, you might want to seriously consider the Tabular Data Control:

■ You only want to read remote data and foresee no need to write or replace remote data.

■ The aggregate data you want to receive (all the rows put together) is relatively small, and
downloading it will not be a problem either for the client or for network bandwidth,
keeping in mind that many users might be connecting with 28.8K modems.

■ The lookups that you need to do on the data are straightforward. In fact, if all you need to
do is read the data a row at a time, this is the type of data access in which the Tabular
Data Control excels.

■ You are learning to work with Data Source Objects or want to refresh your knowledge of
the peculiarities of working with Data Source Objects within a simple example.

For the purposes of this book, the Tabular Data Control provides an excellent way to learn how
to work with Data Source Objects. In addition to being simple to work with, it is also guaran-
teed to work with all users’ machines without concern for which software they are running
because the Tabular Data Control can directly read the files containing the data.

Using the Tabular Data Control
The Tabular Data Control is quite straightforward to use. As previously mentioned, Data
Source Objects are ActiveX objects. The methods for specifying the Tabular Data Control
ActiveX object are similar to the methods discussed in Chapter 13, “Introducing Multimedia,”
when discussing the use of Multimedia Controls.

The basic syntax used in the HTML file for the Tabular Data Control consists of an <OBJECT>
tag that specifies that an object will be present inside of this tag. Next, the CLASSID for the
control is specified. In the case of the Tabular Data Control, the CLASSID is “333C7BC4-460F-
11D0-BC04-0080C7055A83.” Next, the HTML attributes that list the visual representation of the
object are specified. In the case of a Data Source Object control, you don’t want to have a visual
representation, so you can set the attributes accordingly.

Setting an object to have no visual representation involves setting three attributes. The first
attribute is the BORDER attribute, and it specifies the size of the border around the control.
Because you don’t want the user to see anything representing the object, this attribute is set to 0.

The next attribute is the WIDTH attribute, which specifies the width of the control in pixels.
This attribute is set to 0. The HEIGHT attribute specifies the height of the control in pixels. In
this case, it is also set to 0.

Each Data Source Object must also set its ID attribute. This provides the Data Source Object
with an identifier that can be referenced via the DATASRC attribute of the Dynamic HTML
data binding extensions, which can be referenced by elements that support data binding.

259

12

IV
Part

Ch

Take a look at the bare-bones OBJECT definition that has been described thus far:

<OBJECT id=”cars”
 CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83"
 BORDER=”0"
 WIDTH=”0"
 HEIGHT=”0">
</OBJECT>

This syntax defines the basic object reference for the Tabular Data Control. In addition to this
basic reference, two parameters that you need to specify are “DataUrl” and “UseHeader.”

The first parameter is the most important and specifies the URL that contains the data with
which you want to retrieve and perform the data binding. This parameter is the “DataUrl”
parameter and can contain either an absolute or relative URL. It is common to specify only the
file name of the data file, which is automatically referred to as a relative URL:

 <param name=”DataURL” value=”cars.txt”>

The next parameter you need to specify is the “UseHeader” parameter. This parameter defines
whether the data file has a header line containing the names of the fields that make up each
row of the tabular data. The format of the data file is discussed further in the section called
“Tabular Data Control File Properties.” Normally you will want to set this to true, as follows:

 <param name=”UseHeader” value=”True”>

Now that you know the basics of how to use the Tabular Data Control, take a look at a basic
example of the TDC in action. First, you need to specify the data file that will be used. This file
is a standard text file with the name “cars.txt”:

type,year:INT,price:INT
Chevy Nova,1986,1000
Infiniti Q45,1993,12000
Nissan Maxima,1989,4500
Ford Taurus, 1991, 6200
Toyota Camry, 1994, 8300
Honda Accord, 1995, 9200
Volkswagen Beetle, 1970, 800

The HTML file in listing 12.1 is named “ch12ex01.htm” and binds to one record (or row) at a
time from the tabular data source, using the Tabular Data Control that has been constructed.

Listing 12.1 Basic Use of the Tabular Data Control

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Chapter 12, Example 1
05. </TITLE>
06. </HEAD>
07.
08. <BODY>
09.

Tabular Data Control Basics

continues

260 Chapter 12 Using Data Source Objects

http://www.quecorp.com

10. <OBJECT id=”cars”
11. CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83"
12. BORDER=”0"
13. WIDTH=”0"
14. HEIGHT=”0">
15. <PARAM NAME=”DataURL” value=”cars.txt”>
16. <PARAM NAME=”UseHeader” value=”True”>
17. </OBJECT>
18.
19. <H1>Car Type:</H1>
20. <INPUT TYPE=text
21. DATASRC=#cars
22. DATAFLD=”type”>
23.
24. <H1>Car Year:</H1>
25. <INPUT TYPE=text
26. DATASRC=#cars
27. DATAFLD=”year”>
28.
29. <H1>Car Price:</H1>
30. <INPUT TYPE=text
31. DATASRC=#cars
32. DATAFLD=”price”>
33.
34. </BODY>
35. </HTML>

The output of this example is shown in figure 12.1. This example provides a look at the use of
the Tabular Data Control and will be the foundation of the rest of the examples throughout this
chapter. The only code of significance added here, other than the object reference described
earlier, is the data binding to the HTML elements, which was covered in detail in Chapter 11,
“Introduction to Data Binding.”

The Data Source Object is set up in lines 10–17. The Tabular Data Control is specified by the
CLASSID in line 11, and its properties are defined in lines 15 and 16. After defining the Data
Source Object, you need to perform the data binding.

In this case, three HTML INPUT fields are bound to the data. The first is bound to the “type”
field (line 22), the second to the “year” field (line 27), and the third to the “price” field (line 32).

Navigating Data with the Tabular Data Control
Earlier in the chapter, you learned that Data Source Objects are responsible for manipulations
on retrieved data. One such manipulation is the act of keeping track of where in the current set
of tabular data the data binding is occurring.

Listing 12.1 Continued

261

12

IV
Part

Ch

In Chapter 11, you learned about the concept of value binding versus set binding. When table
binding is used, all the data from the data source is retrieved by the table-based data consumer
and the entirety of that data is shown by default, but certain HTML attributes enable you to
display a group at a time.

The situation with value binding is quite different. With value binding, only the current record
(or row) is available at any given time. This means that when the page is first shown, only the
fields from the first record returned by the Data Source Object are available.

This notion that only one record is available at a time is known as current record binding. When
only the current record is bound, there must be a way to move around inside the Data Source
for it to be truly useful.

The Tabular Data Control supports the standard methods for moving around in a data set
required by Data Source Objects. The two important methods covered here are MoveNext()
and MovePrevious().

The MoveNext() method moves to the next row in the current Data Source Object. Conversely,
the MovePrevious() method moves to the row that came before the current row in the Data
Source Object.

These methods are not available via the main Data Source Object itself. Every Data Source
Object, instead, contains an object called recordset. The methods for movement can be used
through this recordset object.

So, to move forward a record in a Tabular Data Control named “parts,” you would use the
following JavaScript command:

parts.recordset.MoveNext();

FIG. 12.1
Output from basic
Tabular Data Control
example.

Tabular Data Control Basics

262 Chapter 12 Using Data Source Objects

http://www.quecorp.com

To move backward a record to the previous record in the aforementioned Tabular Data Con-
trol, you would use this JavaScript code:

parts.recordset.MovePrevious();

To facilitate this type of movement, the Data Source Object keeps track of a pointer to the
current row that is bound to the page. This pointer is also available to your scripting language
programs.

This pointer is accessible through the Data Source Object you are using (in this case the Tabu-
lar Data Control) as the “AbsolutePosition” property of the recordset object contained in the
relevant Data Source Object. One important thing to note is that the AbsolutePosition property
starts counting records at 1. Therefore, the first record would be located at position 1.

Therefore, if you wanted to save the current position of the record pointer in the “part” Tabular
Data Control into the JavaScript variable “curr_rec,” you would use the following syntax:

var curr_rec = parts.recordset.AbsolutePosition;

When the pointer to the current record is moved via the MoveNext() or MovePrevious()
method, the data bound HTML is automatically updated to the new row contents. All the fields
with their DATASRC pointing to this Data Source Object will be updated.

In much the same manner as the AbsolutePosition property, the Data Source Object also keeps
track of the number of records available. This information is contained in the “RecordCount”
property, and is accessed as follows:

parts.recordset.RecordCount

Take a look at a concrete example. Use the data file from the previous example (cars.txt). Save
the following HTML file in listing 12.2 as “ch12ex02.htm”.

Listing 12.2 Moving Around in Recordsets

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Chapter 12, Example 2
05. </TITLE>
06. </HEAD>
07.
08. <BODY>
09.
10. <OBJECT id=”cars”
11. classid=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83"
12. border=”0"
13. width=”0"
14. height=”0">
15. <param name=”DataURL” value=”cars.txt”>
16. <param name=”UseHeader” value=”True”>
17. </OBJECT>
18.

263

12

IV
Part

Ch

19. <SCRIPT LANGUAGE=JavaScript>
20.
21. function carsForward() {
22.
23. if (cars.recordset.AbsolutePosition !=
24. cars.recordset.RecordCount) {
25. cars.recordset.MoveNext();
26. }
27. }
28.
29. function carsPrevious() {
30.
31. if (cars.recordset.AbsolutePosition > 1) {
32. cars.recordset.MovePrevious();
33. }
34. }
35.
36. </SCRIPT>
37.
38.
39. <INPUT TYPE=BUTTON
40. id=Next
41. VALUE=” <— “
42. onclick=”carsPrevious()”>
43.
44. <INPUT TYPE=BUTTON
45. id=Prev
46. VALUE=” —> “
47. onclick=”carsForward()”>
48. <P>
49. <H1>Car Type:</H1>
50. <INPUT TYPE=text
51. DATASRC=#cars
52. DATAFLD=”type”>
53.
54. <H1>Car Year:</H1>
55. <INPUT TYPE=text
56. DATASRC=#cars
57. DATAFLD=”year”>
58.
59. <H1>Car Price:</H1>
60. <INPUT TYPE=text
61. DATASRC=#cars
62. DATAFLD=”price”>
63.
64. </BODY>
65. </HTML>

The output from this HTML code is shown in figure 12.2. Whenever the button with a left
arrow on it is clicked, the previous record in the tabular data is shown. Whenever the right
button is clicked, the next record is shown. The left arrow cannot move past the beginning of
the records and the right arrow cannot move past the end.

Tabular Data Control Basics

264 Chapter 12 Using Data Source Objects

http://www.quecorp.com

The first code addition to the previous example in listing 12.2 that you should focus on is the
buttons that control the movement through the records. The following listing excerpt defines
the left arrow button:

39. <INPUT TYPE=BUTTON
40. id=Next
41. VALUE=” —> “
42. onclick=”carsForward()”>

These four lines of code create an INPUT element that represents a button with a caption that
makes it apparent that it causes forward movement. This code also sets up an event handler to
execute when it is clicked.

The event handler that is called by the Next button is “carsForward()”:

21. function carsForward() {
22.
23. if (cars.recordset.AbsolutePosition !=
24. cars.recordset.RecordCount) {
25. cars.recordset.MoveNext();
26. }
27. }

The carsForward() function first checks to see if the current position (AbsolutePosition) is
equal to the number of records in this Tabular Data Control. If it is not, then you can move
forward a record.

If you are currently at the last record in the Data Source Object, however, nothing is done.
Why is this? You do not want to attempt to move past the end of the number of records that are
available, so you do a check first. If you don’t check first and try to move ahead when you’re
already at the end, a runtime error is generated.

FIG. 12.2
Output from moving
around in recordsets
example.

265

12

IV
Part

Ch

The “carsPrevious()” function works similarly. It is bound to the Prev button that has the left
arrow caption:

29. function carsPrevious() {
30.
31. if (cars.recordset.AbsolutePosition > 1) {
32. cars.recordset.MovePrevious();
33. }
34. }

The carsPrevious() function checks first to see whether the current record is greater than 1.
Records in Data Source Objects are referenced starting with “1,” so first the current record is
checked to make sure that it is greater than 1.

If the current record is greater than 1, the current record is set to the record that comes before
it with the “MovePrevious()” method. If the current record is 1, however, nothing is done. You
do nothing because you do not want to try to move to before the first record.

Tabular Data Control File Properties
Many of the properties supported by the Tabular Data Control are related to the file that it
reads to retrieve the data to present to be bound. This file is parsed into columns and rows and
is the representation of the desired tabular data.

CharSet Property The first property supported by the Tabular Data Control is the character
set used for the data file. It is represented by the property Charset (tdcObject represents a
generic Tabular Data Control Object):

var cSet = tdcObject.Charset;

If you are running the scripting inside of Internet Explorer 4.0 in an English speaking lan-
guage, the normal character set that will be returned by this property will be “-8859-1.” If you
are running with a language other than English, this property will return the character set type
for that language.

Language Property The Language property is similar to the CharSet property, except that
instead of specifying the types of characters to use, it specifies the actual language with which
the data file is written. This property is accessed as follows:

var Lang = tdcObject.Language;

Although English in the United States and in England use the same characters, for instance,
the languages themselves are slightly different. For this reason, in the United States this prop-
erty will be “eng-us.”

UseHeader Property The UseHeader property of the Tabular Data Control specifies whether
the first line of the data file will contain a header line with the names of each column (and possi-
bly the data type that the column represents).

The UseHeader property is a Boolean property and is accessed in the following manner:

tdcObject.UseHeader = boolean_value;

Tabular Data Control Basics

266 Chapter 12 Using Data Source Objects

http://www.quecorp.com

The header line is specified in much the same way as the data itself, with the same field delim-
iter (which is by default a comma) and row delimiter (which is by default a newline).

Take a look at a sample data file that represents the product line of a tool manufacturer:

PartName,InStock:Int,Price:Float
Hammer,20,6.99
Drill,150,49.99
Lathe,27,288.95
Press,10,1532.22

Assuming the UseHeader property has been set to true, the first line here will be interpreted as
the header line. It defines three fields, as follows:

■ PartName—A text string representing the name of the part in the company’s database.

■ InStock—The number of this item currently in inventory, represented as an integer
value.

■ Price—The price in dollars and cents for this item through the company, represented as
a floating point value.

Note that the data type of each field is specified after the name of the field and is separated
from the field name via a colon. The valid types available are as follows:

■ Boolean—A logical value that can contain either true or false.

■ Date—A value representing a day of the year.

■ Float—A floating point number. Floating point numbers are those that can contain
decimal points (for example, 25.624, 901.20, and so on).

■ Int—A value that can hold any integer value. Integers are numbers that cannot contain
decimal points.

■ String—Any textual data that is representable as a string of characters. The sentences in
this bullet point, for example, are strings themselves—string is the default data type for
the field if none is specified.

The main reason you might want to specify the type of data that is contained in a field is for
sorting reasons. This is because strings will sort differently than integers or numbers and may
very well provide seemingly incorrect results.

DataURL Property The DataURL property specifies the location of the data file that will be
used for the actual tabular data in the Tabular Data Control. The value of this property can be
any valid URL that the web browser can use to fetch the data file:

This property is normally specified in the <OBJECT> tag as follows:

<OBJECT id=”cars”
 ...>

 <PARAM NAME=”DataURL” value=”cars.txt”>

 ...
</OBJECT>

267

12

IV
Part

Ch

You can also specify this property dynamically later in your scripts, as follows:

tdcObject.DataURL = “boats.txt”;

When you change the DataURL property in your scripts in this manner, the Tabular Data Con-
trol automatically drops the current tabular data and replaces it with the new file that you have
specified.

This capability is useful if you want to reuse the same Tabular Data Control across multiple
data files. If you have multiple data sets and will never need to access them at the same time,
setting the DataURL property on one Tabular Data Control is certainly an efficient way to
do so.

FieldDelim Property The FieldDelim property specifies the character that is used to separate
date fields from one another. This concept is known as field delimiting. The default character
used is the comma (“,”); however, the field delimiting character can be any valid ASCII charac-
ter. The following example specifies that the field delimiting character would be “|”:

tdcObject.FieldDelim = “|”

If you were using this character for delimiting fields, the example data file from the
“UseHeader Property” section would have to change to the following:

PartName|InStock:Int|Price:Float
Hammer|20|6.99
Drill|150|49.99
Lathe|27|288.95
Press|10|1532.22

RowDelim Property The RowDelim property is much like the FieldDelim property, except
that instead of specifying the delimiter between fields, it specifies the delimiter in between
rows in the tabular data.

Take a look at how the RowDelim property is used. Suppose you wanted to change the row
delimiter to “*”. You would use the following syntax

tdcObject.RowDelim = “*”;

Then (assuming you were also using the field delimiter that was used previously), your data
file would look like the following:

PartName|InStock:Int|Price:Float*
Hammer|20|6.99*
Drill|150|49.99*
Lathe|27|288.95*
Press|10|1532.22*

Tabular Data Control Sorting
Sorting is one of the most common operations performed with data. You may remember from
earlier in the chapter that the Data Source Object is responsible for all sorting performed on
the data.

Tabular Data Control Basics

268 Chapter 12 Using Data Source Objects

http://www.quecorp.com

The Tabular Data Control supports two types of sorting: ascending and descending.

An ascending sort arranges the data from smallest to largest if a number is being used, and
sorts by ASCII value (a comes before z) if a string is being used.

A descending sort arranges the data from largest to smallest if a number is being used, and
sorts by ASCII value (z comes before a) if a string is being used.

Additionally, you may specify the column on which you want to sort. This means that you do
not have to decide which column to put first in the data file because any column can be sorted.

The specification to sort can take place either in the <OBJECT> definition for the Data Source
Object or in a script. The example in listing 12.3 places the sort specification in the <OBJECT>
definition:

Here is the data file to use. Save this file as furniture.txt:

type,color,price:INT
sofa,green,300
bed,white,850
desk,woodgrain,350
chair,black,475
table,red, 175
recliner,plaid,425

Listing 12.3 shows the HTML document for specifying the data sort order. Save this file as
“ch12ex03.htm”. Figure 12.3 shows the output for this example.

Listing 12.3 Sorting Example

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Chapter 12, Example 3
05. </TITLE>
06. </HEAD>
07.
08. <BODY>
09.
10. <OBJECT id=”furniture”
11. CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83"
12. BORDER=”0"
13. WIDTH=”0"
14. HEIGHT=”0">
15. <PARAM NAME=”DataURL” VALUE=”furniture.txt”>
16. <PARAM NAME=”UseHeader” VALUE=”True”>
17. <PARAM NAME=”Sort” VALUE=”price”>
18. </OBJECT>
19.
20. <TABLE DATASRC=”#furniture” BORDER=1>
21. <TR>
22. <TD>
23.
24. </TD>

269

12

IV
Part

Ch

25. <TD>
26.
27. </TD>
28. <TD>
29.
30. </TD>
31.
32. </TR>
33. </TABLE>
34.
35. </BODY>
36. </HTML>

For the most part, this example should seem quite familiar to you because it uses many of the
concepts discussed in detail in the previous two chapters.

The addition to this listing is related to the parameter for sorting. The “Sort” parameter speci-
fies which column of the tabular data to sort upon. In this case, you want to generate a table
that is sorted by the price of the item, so you specify the “price” column:

17. <PARAM NAME=”Sort” VALUE=”price”>

You can also specify whether to sort in ascending or descending order. By default, ascending
order is used. If you want to use descending order instead, place a minus sign(–) before the
name of the column in the “Sort” property. For instance, if you want to use descending order
with the example, change line 17 to the following:

17. <PARAM NAME=”Sort” VALUE=”-price”>

FIG. 12.3
Output from sorting
example.

Tabular Data Control Basics

270 Chapter 12 Using Data Source Objects

http://www.quecorp.com

From Here…
This chapter covered the use of Data Source Objects in Dynamic HTML in conjunction with
the HTML data binding extensions. This chapter focused on the Tabular Data Control because
it is the simplest Data Source Object to understand and can be guaranteed to run on any
machine running Internet Explorer 4.0 because the Tabular Data Control does not require a
separate server for data access.

The next section of the book will discuss the multimedia aspects of Dynamic HTML. These
multimedia aspects are in many ways the most exciting aspect of Dynamic HTML because they
enable you to include advanced visual effects in your web pages in a straightforward manner.

■ Chapter 13, “Introducing Multimedia”— Introduces you to basic multimedia effects in
Dynamic HTML like animating HTML elements on your web pages.

■ Chapter 14, “Multimedia Transitions”— Gives you an overview of effects that can be
used to transition from one HTML element to another.

■ Chapter 15, “Multimedia Filters and ActiveX Controls”— Shows you how to use filters to
specify interesting visual effects like blur on your HTML elements. In addition, using
ActiveX multimedia controls with your documents will be discussed.

VP A R T

Multimedia and Dynamic HTML

13 Introducing Multimedia 273

14 Multimedia Transitions 289

15 Multimedia Filters and ActiveX Controls 315

273

13

V
Part

Ch

O

13C H A P T E R

Multimedia with Scripting

Learn to use JavaScript methods to
create multimedia effects without
using ActiveX.

Rotating Text and Objects

The Dynamic HTML ActiveX Con-
trols enable the manipulation of
elements on the page, such as
rotating objects.

Structured Graphics

The Structured Graphics Control
enables you to create 2D line art
and graphics primitives.

Path Animation Effects

In addition to animation through
scripting, the Path Animation Con-
trol enables you to animate objects
on a path.

Transitions

Dynamic HTML introduces a whole
set of ActiveX Controls to provide
multimedia transitions. In addition,
some transition effects can be
created using scripting.

Filters

Explore ActiveX Multimedia Con-
trols that enable you to apply filters
to objects on your pages to create a
stunning array of multimedia
effects.

ne of the Dynamic HTML features that has not been
discussed much in earlier chapters is the multimedia
effects supported with Internet Explorer 4.0. A number of
new special effects can be achieved by exploiting various
Dynamic HTML technologies, and in this chapter you
begin to look at some of those features.

Implementing many of the multimedia controls is not
trivial, so this chapter will provide in-depth coverage of
some multimedia techniques that you can create without
the ActiveX Multimedia Controls. Then you will be intro-
duced to the effects that will be covered in greater detail
in Chapter 14, “Multimedia Transitions,” and Chapter 15,
“Multimedia Filters and ActiveX Controls.” ■

Introducing Multimedia

274 Chapter 13 Introducing Multimedia

http://www.quecorp.com

Multimedia Effects with Dynamic HTML
Before discussing the types of multimedia effects, such as transitions and filters, that can be
achieved by using ActiveX Controls, it is important that you understand what can be achieved
with Dynamic HTML with scripting and positioning.

If you recall from the examples in Chapter 9, “Layout and Positioning,” you already know that it
is possible to manipulate images and text on the page by altering the CSS Positioning proper-
ties and attributes. You use JavaScript in conjunction with CSS Positioning to scroll images
onto the screen and to move elements around on the page. The same techniques can be ap-
plied to other positioning properties to create effects such as scaling, transitions, and anima-
tions. These basic multimedia techniques implemented with positioning and scripting are
described in the sections that follow.

Scaling Images
One simple effect you can create with Dynamic HTML and CSS Positioning is the scaling of an
image. Scaling an image involves enlarging or shrinking the image from its original size. The
progressive code that follows is numbered corresponding to its placement in the final code in
listing 13.1.

The first thing you need to do is define the image that you are going to scale:

21. <IMG id=”ScaleMe” STYLE=”position: relative; top:25; left:25;
➥width: 195px; height: 171px;” onclick=“scaleCat();” SRC=”kitty.gif”>

You can define the image using the tag and the CSS Positioning elements. You place the
image on the page with the position property, and then specify the width and height dimen-
sions of the positioning container—in this case 195×171 pixels.

By specifying the width and height of the position container as the same size as the image, the
image is shown normally. To scale the image, all you need to do is manipulate the width and the
height property values. You can change the width and height property values by writing a
JavaScript function to change these values:

07. function scaleCat() {
08. if (ScaleMe.style.pixelWidth < 250) {
09. ScaleMe.style.pixelWidth +=1;
10. ScaleMe.style.pixelHeight += 1;
11. window.setTimeout(“scaleCat();”, 1);
12. }
13. }

The scaleCat() function uses an if statement to determine the stopping point for this scaling
exercise, then increments the height and width each by a pixel. Incrementing both properties
by the same amount will keep the proportions of the image in sync. If you want to stretch an
image or squash an image, you could change one property, but not the other. Finally, you use
the window.setTimeout() method to pause briefly between each step, so the animation is
visible.

275

13

V
Part

Ch

Listing 13.1 shows the final code to scale the image, and figure 13.1 shows the results of the
exercise.

Listing 13.1 Scaling an Image

01. <HTML>
02. <HEAD>
03. <TITLE>Scale Image</TITLE>
04.
05. <SCRIPT>
06.
07. function scaleCat() {
08. if (ScaleMe.style.pixelWidth < 250) {
09. ScaleMe.style.pixelWidth +=1;
10. ScaleMe.style.pixelHeight += 1;
11. window.setTimeout(“scaleCat();”, 1);
12. }
13. }
14.
15. </SCRIPT>
16.
17. <BODY>
18. <P>
19.
➥Click the image to adjust the scale.
20. <P>
21. <IMG id=”ScaleMe” STYLE=”position: relative; top:25; left:25;
➥width: 195px; height: 171px;” onclick=”scaleCat();” SRC=”kitty.gif”>
22.
23. </BODY>
24. </HTML>

FIG. 13.1
Scaling an image with
DHTML and CSS
Positioning.

This scaling technique could be used to enlarge a photo for greater detail, such as a page of
thumbnails for an art history lesson. Each image would be shown in miniature, and when the
image is clicked, users would see the full-sized image. Also, later in this chapter you will take a
look at how this technique can be used to create a multimedia transition without ActiveX.

Multimedia Effects with Dynamic HTML

276 Chapter 13 Introducing Multimedia

http://www.quecorp.com

Transitions
Microsoft provides a number of ActiveX-based Multimedia Controls that provide access to
some pretty complex transitions; however, sometimes you might want a simple transition. Even
more likely, there may be times when you do not feel like going through the hassle involved
with ActiveX.

Using techniques such as the scale trick covered in the preceding section, you can build a
number of transitions that are quick, look good, and are fairly straightforward to script.

Take a look, for example, at a modification you can make to the preceding scaling example.
First, because it is possible to grow the image, it makes sense that the image can be shrunken
as well. So why not shrink an image into oblivion? Then the image will no longer be on the
page, creating a transition in effect.

To create this shrinking effect, you will make some small changes to the code in listing 13.1.
First, you will need to modify the statements in the functions that increment the width and
height properties so that the functions decrement these properties instead. Changing line 9
from listing 13.1 effectively causes the scaling function to operate in reverse:

09. ScaleMe.style.pixelWidth +=1;

to

09. ScaleMe.style.pixelWidth –=1;

Now all you need to do is ensure that the image disappears. You can accomplish this by imple-
menting the overflow and clip properties.

If you recall from Chapter 9, “Layout and Positioning,” the overflow property controls how to
handle clipping when your image is too large for the area. The clip property enables you to
define a clipping area. So you add these properties to the image object:

21. <IMG ID=”ScaleMe” STYLE=”position: relative; top:25; left:25;
➥width: 195px; height: 171px; overflow: clip; clip: auto;
➥” onclick=”scaleCat();” SRC=”kitty.gif”>

This line ensures that the image will be clipped. Because the clipping value is auto, the image
will be clipped according to the boundaries of the positioning container, so as you shrink the
positioning container with the width and height property values, the image will shrink away into
nothing. Listing 13.2 shows the final code used to create this effect.

Listing 13.2 A Shrinking Effect in Dynamic HTML

01. <HTML>
02. <HEAD>
03. <TITLE>Non ActiveX transition</TITLE>
04.
05. <SCRIPT>
06.
07. function scaleCat() {
08. if (ScaleMe.style.pixelWidth > 0) {

277

13

V
Part

Ch

09. ScaleMe.style.pixelWidth –=1;
10. ScaleMe.style.pixelHeight –= 1;
11. window.setTimeout(“scaleCat();”, 1);
12. }
13. }
14.
15. </SCRIPT>
16.
17. <BODY>
18. <P>
19. Click to shrink the cat.
20. <P>
21. <IMG id=”ScaleMe” STYLE=”position: relative; top:25; left:25;
➥width: 195px; height: 171px; overflow: clip; clip: auto;
➥” onclick=”scaleCat();” SRC=”kitty.gif”>
22.
23. </BODY>
24. </HTML
25. </HTML>

The results of the shrinking image script in listing 13.2 are shown in figure 13.2.

Although there are applications where scaling images might be necessary, there are also a
number of transition techniques that could make use of scaling an image, such as a faux wipe.

Scaling Transitions
Now that you know how to scale images in either direction, it would be useful to create a transi-
tion using these techniques. For this transition the original image will shrink into a point; then
the second image will grow out of the point. You might have seen a similar technique in old
television shows or movies. Although similar transitions can be accomplished with ActiveX
Controls, many users have disabled ActiveX Controls due to security concerns. Using pure
Dynamic HTML transition assures that they will be visible to more users. Additionally, these
types of transitions can also be easily adapted for use with CDF Channels, as means of transi-
tions or user interface elements. The progressive code that follows is numbered according to
its placement in the final code in listing 13.3.

FIG. 13.2
Reversing the scaling
process shrinks the
image.

Multimedia Effects with Dynamic HTML

278 Chapter 13 Introducing Multimedia

http://www.quecorp.com

First, you must define the two elements to be used in the transition:

30. <IMG id=”ScaleMe” STYLE=”position: absolute; top:25; left:25; width: 195px;
➥height: 171px; overflow: clip; clip: auto;” onclick=”scaleCat();
➥” SRC=”kitty.gif”>
31.
32. <IMG id=”ScaleTwo” STYLE=”position: absolute; top:25; left:25; width: 0px;
➥height: 0px; overflow: clip; clip: auto;” onclick=”scaleCat();
➥” SRC=”toobig.gif”>

As with the scaling examples, these tags specify the following:

■ The type of positioning

■ The location of the element

■ The position container parameters

■ The overflow and clipping attributes

■ The function to be called to start the transition

■ The location of each image

Next, you create the function that will shrink the first image:

07. function scaleCat() {
08. if (ScaleMe.style.pixelWidth > 0) {
09. ScaleMe.style.pixelWidth –=1;
10. ScaleMe.style.pixelHeight –= 1;
11. window.setTimeout(“scaleCat();”, 1);
12. scaleAnother();
13. }
14. }

This function is identical to the shrinking function in listing 13.2 with only one exception: at the
end of the function, scaleAnother() is called, which is the function you will use to grow the
second image in place of the first. Here’s the function that is called to grow the second image:

16. function scaleAnother() {
17. if (ScaleMe.style.pixelWidth < 150) {
18. ScaleTwo.style.pixelWidth +=1;
19. ScaleTwo.style.pixelHeight += 1;
20. }
21. }

That’s all there is to it. With the scaleCat() and scaleAnother() functions in place and the ele-
ments defined accordingly, you have a transition that will zoom one image out, then zoom
another image in to occupy its place. The final code is displayed in listing 13.3, and figure 13.3
shows the final results.

Listing 13.3 A Non-ActiveX Scaling Transition

01. <HTML>
02. <HEAD>
03. <TITLE>Non ActiveX transition</TITLE>
04.
05. <SCRIPT>
06.

279

13

V
Part

Ch

07. function scaleCat() {
08. if (ScaleMe.style.pixelWidth > 0) {
09. ScaleMe.style.pixelWidth –=1;
10. ScaleMe.style.pixelHeight –= 1;
11. window.setTimeout(“scaleCat();”, 1);
12. scaleAnother();
13. }
14. }
15.
16. function scaleAnother() {
17. if (ScaleMe.style.pixelWidth < 150) {
18. ScaleTwo.style.pixelWidth +=1;
19. ScaleTwo.style.pixelHeight += 1;
20. }
21. }
22.
23. </SCRIPT>
24.
25. <BODY>
26. <P>
27. <SPAN STYLE=”position: absolute; top: 210; left: 25; color: green;
➥”>Click on the cat to turn it into a pumpkin.
28. <P>
29.
30. <IMG id=”ScaleMe” STYLE=”position: absolute; top:25; left:25; width: 195px;
➥height: 171px; overflow: clip; clip: auto;” onclick=”scaleCat();
➥” SRC=”kitty.gif”>
31.
32. <IMG id=”ScaleTwo” STYLE=”position: absolute; top:25; left:25; width: 0px;
➥height: 0px; overflow: clip; clip: auto;” onclick=”scaleCat();
➥” SRC=”toobig.gif”>
33. </BODY>
34. </HTML>

FIG. 13.3
The first image vanishes
into nothing and a
second image grows in
its place.

Multimedia transitions like this one provide a more interesting way to flip between images.
Perhaps, for example, you operate a garage that specializes in restoring antique cars. You could
use this type of transition to flip between before-and-after photos of your work. Of course, if you
were developing a CDF Channel, you could also use this type of transition to create a movie
effect for the content of your channel.

Multimedia Effects with Dynamic HTML

280 Chapter 13 Introducing Multimedia

http://www.quecorp.com

Click and Drag Effects
In addition to the automated effects you can use to add more zip to your Dynamic HTML
pages, you might want to take advantage of other types of multimedia devices on your site.
Recall the Alien Head demo from earlier in the book, which was a game that functioned like
Mr. Potato Head. In the Alien Head demo, users could click elements and drag them onto a
head to create a face.

Dragging an element on a page, repositioning an element based on mouse events, and manipu-
lating images are all useful effects for building new user interface designs. So how were these
effects achieved in the Alien Head demo? The progressive code leading up to listing 13.4 exam-
ines the steps you need to take to create Dynamic HTML that can be used to reposition an
image on the page. The progressive code snippets are numbered according to their final place-
ment in listing 13.4.

In this example, you are going to create a function that enables the user to click an image and
drag it around on a web page. You accomplish this type of interaction by designing a function
that captures the mouse event when the image is clicked, then retrieves the coordinates of the
mouse pointer. You will use these coordinates to reposition the images on the page.

First, you must define the two elements you are going to place on the page:

24. <IMG id=”MONEY” STYLE=”position: relative; top: 25px ; left: 25px;
➥z-index: 2;” onmousemove=”MoveObject();” SRC=”money.gif”>
26. <IMG id=”CLIP” STYLE=”position: relative; top: 50px; left: 25px;
➥z-index: 1;” onmousemove=”MoveObject();” SRC=”paperclips.gif”>

These image tags place the images on the page and set the layers so that the images overlap
properly. These lines also use onmousemove=“MoveObject();” to specify what function should
be called when you move the element. The decision to use onmousemove is important, because
the mouseMove event will enable you to access the window events objects that you can use for
the coordinates.

That’s all you have to do for the document itself, but now you need to write the function that is
going to move the elements.

The MoveObject() function must perform several tasks. First, it needs to check to make sure
the mouse button is pressed to move an object. Then, it needs to retrieve the coordinates of the
mouse pointer and reapply these to coordinates the object. The MoveObject() function is de-
fined in the following code:

07. function MoveObject() {
08 if (window.event.button == 1) {
09. var srcElement, newtop, newleft;
10. srcElement = window.event.srcElement;
11. newleft=window.event.x – (srcElement.width/2);
12. newtop=window.event.y – (srcElement.height/2);
13. srcElement.style.posTop = newtop;
14. srcElement.style.posLeft = newleft;
15. window.event.returnValue = false;
16. }
17. }

281

13

V
Part

Ch

A quick glance at the function also reveals that the ID of the images that are going to be mov-
ing are not listed anywhere on the page because you want to make sure that the function is not
specific to any image. If you wrote a function that just moved one image, then you would have
to repeat the function for each image on the page. This is not very scalable. With the function
defined in lines 7–17, any image on the page could easily be moved without writing additional
code. To help you understand what is going on in the preceding 11 lines of code, the following
paragraphs dissect the function.

First, you need some mechanism to make sure that the actions of the “dragging” function are
being performed only if the mouse button is clicked. Otherwise you would not be able to pick
up and set down the image in between moving it. To accomplish this, you will use the
window.event.button property that returns a value when mouse buttons are pressed. To deter-
mine if the left mouse button is clicked, you can use an if statement, which checks to see if the
value for window.event.button is equal to 1:

07. function MoveObject() {
08. if (window.event.button == 1) {
16. }
17. }

Now you can be sure that whatever actions you include in the if statement will only be ex-
ecuted if the mouse button is pressed. Next, you are going to establish the variables you are
going to use in the function to keep track of information:

09. var srcElement, newtop, newleft;

Now that you have the variables, you must be able to do something with them. The first order
of business is to assign a value to srcElement:

10. srcElement = window.event.srcElement;

This assignment creates a handle that you can use to refer to the object that you are going to
be moving. The value is set as being equal to the value that is passed to the function by the
window.event.srcElement method. This method will pass along the ID of the element that you
click, so you can then use srcElement as if it were the same as the object’s ID.

The next two assignments might be somewhat confusing at first glance:

11. newleft=window.event.x – (srcElement.width/2);
12. newtop=window.event.y – (srcElement.height/2);

These are the variables that determine what the new value should be for the X and Y coordi-
nates of the object being moved. To better understand this process, take a look at the following
series of steps, which breaks down the entire transaction:

1. First, it might seem that you should just be able to use window.event.x to specify the X
coordinate; however, this doesn’t enable you to ensure that the X coordinate is always
related to the image being moved. That is, after the mouse cursor left the image area, the
image would stop moving, and the range of motion would be limited.

2. You also want to be able to move the element with respect to the center of the element,
rather than its top or bottom. The way you accomplish this alignment is to take the width
of the entire element, then divide it in half to put you in the center of the image.

Multimedia Effects with Dynamic HTML

282 Chapter 13 Introducing Multimedia

http://www.quecorp.com

3. Next, you subtract that coordinate from the X position of the cursor, which gives you a
true new X coordinate based on the center of the image.

4. Repeat the previous three steps to determine the Y coordinate.

Now you are in the home stretch for the MoveObject() function. You now have values for the
new X position (newleft) and the new Y position (newtop). All you need to do is to make the
assignment to the top and left properties for the image you are moving:

13. srcElement.style.posTop = newtop;
14. srcElement.style.posLeft = newleft;

These lines use the srcElement variable to specify the element you are referencing. Next, you
specify that you are modifying a style element (posTop and posLeft) and you assign the new
values. Now the images are moving! There is, however, one last line:

15. window.event.returnValue = false;

You can run the script without this line, but you might notice some strange behavior. The im-
ages animate with jerks and starts, or sometimes fail to move. This behavior is due to the fea-
tures of Dynamic HTML event handling. Setting the returnValue property to false cancels the
default event handling, resulting in a smooth transition. The script for the MoveObject() func-
tion appears in lines 5–19 in listing 13.4.

Now, if you assemble all the code snippets, the final code for clicking and dragging images is
shown in listing 13.4.

Listing 13.4 Clicking and Dragging Images with Dynamic HTML

01. <HTML>
02. <HEAD>
03. <TITLE>Dynamic HTML Grabbing</TITLE>
04.
05. <SCRIPT>
06.
07. function MoveObject() {
08. if (window.event.button == 1) {
09. var srcElement, newtop, newleft;
10. srcElement = window.event.srcElement;
11. newleft=window.event.x – (srcElement.width/2);
12. newtop=window.event.y – (srcElement.height/2);
13. srcElement.style.posTop = newtop;
14. srcElement.style.posLeft = newleft;
15. window.event.returnValue = false;
16. }
17. }
18.
19. </SCRIPT>
20. </HEAD>
21.
22. <BODY>
23.
24. <IMG id=”MONEY” STYLE=”position: relative; top: 25px ; left: 25px;
➥z-index: 2;” onmousemove=”MoveObject();” SRC=”money.gif”>

283

13

V
Part

Ch

25.
26. <IMG id=”CLIP” STYLE=”position: relative; top: 50px; left: 25px;
➥z-index: 1;” onmousemove=”MoveObject();” SRC=”paperclips.gif”>
27.
28. </BODY>
29. </HTML>

Figure 13.4 shows the results of the this Dynamic HTML example. Each one of the elements
can be clicked and the image repositioned by dragging it around the page.

Introducing the ActiveX Multimedia Controls
Now that you have seen how you can use Dynamic HTML to create some multimedia effects
on your pages, you probably are wondering how far the possibilities extend. In reality, given
enough time, some very nice and compelling multimedia effects can be generated using posi-
tioning and scripting. Some effects, however, are not realistically possible using just positioning
and scripting.

It would not be possible to perform complex transformations on images with just scripting, for
example. What if you wanted to blur or invert an image? By the same token, you might want to
have one image dissolve into another. These types of effects are all great uses of multimedia
and could be useful on your pages; so, Microsoft has provided a mechanism called Multimedia
Controls to create some stunning effects.

The Dynamic HTML Multimedia Controls are ActiveX Controls that you can use and manipu-
late in conjunction with Dynamic HTML to create multimedia effects in real time. The rest of
this chapter introduces these controls and their functions. The usage of the controls is covered
in Chapters 14 and 15.

Rotating Text and Objects
The first group of Multimedia Controls is designed to perform functions similar to positioning;
however, they are slightly more advanced. Each of these controls can be applied to any type of
element, and offer a number of highly customizable parameters.

FIG. 13.4
Click and drag
animation is possible
with Dynamic HTML.

Introducing the ActiveX Multimedia Controls

284 Chapter 13 Introducing Multimedia

http://www.quecorp.com

■ Rotate—The Rotate Control enables you to rotate an object in any direction. This control
can be used to rotate images and text, as shown in figure 13.5.

■ Translate—The Translate Control enables you to control the location of an element on
the page. When used with a sequencer, this control can be used to create complex
animation and flying effects that are machine independent and quite flexible.

■ Scale—The Scale Control enables you to scale elements. Although the effect can be
achieved without ActiveX, the Scale Control offers some fine tuning and performance
enhancements not possible when relying only on scripting.

Structured Graphics
Some of the most powerful Multimedia Controls are the Structured Graphics Controls. These
controls enable you to render graphics on the screen using graphic primitives and techniques.
This functionality enables you to create some complex vector graphic images and elements
that are then easily manipulated by other Multimedia Controls.

The Structured Graphics Controls include several controls designed to perform the basic
graphic functions needed to produce usable elements:

■ Oval—The Oval Control enables you to create an oval shape by providing the control
with the proper coordinates. The oval can be constructed of lines or it can be a filled
element. Circles can also be created with the Oval Control.

■ Rect—The Rect Control enables you to create a rectangle polygon by providing the
control with the proper defining coordinates. The rectangle can be constructed of lines,
or it can be a filled element. Users can also create squares with the Rect Control.

FIG. 13.5
Multimedia Controls can
be used to create
effects such as rotated
text.

285

13

V
Part

Ch

■ Fills—The Fills Control enables you to create customized fills for various elements. The
fills can be applied to elements constructed with the Oval and Rect Controls.

■ Lines—In addition to polygon shapes, the Lines Control enables you to create lines that
can be linked together to create a variety of different graphics.

Path Animation Effects
From earlier chapters and from the examples in this chapter, you have seen that it is possible
to animate elements on a page using scripting and CSS Positioning. Using this methodology to
get an object to follow a predefined path, however, can be quite difficult. It is also not easy to
cause the object to loop on a path with this method.

With the Path Controls, you can actually create a path for an object to follow when it moves.
This enables you to create some complex animations with great precision, and any object can
be animated on a path. Here are the Path Controls:

■ pthRect—The pthRect Control enables you to specify a rectangular shape that can be
used as an element motion path.

■ pthOval—The pthOval Control enables you to specify an oval shape that can act as the
motion path for an object.

■ pthPolygon—The pthPolygon Control enables you to create a polygon shape that will be
used as the path for animating an object. This control could be used to create motion
paths based on pentagons, octagons, and so on.

■ pthPolyline—The pthPolyline Control enables you to describe a motion path that is
constructed of multiple line segments. This enables you to create motion paths that are
almost completely arbitrary and are not bound to a geometric shape as the other paths are.

Transitions
The list contained in this section is a brief description of the transitions available with Dynamic
HTML by using the ActiveX Multimedia Controls. Each of these transitions and their imple-
mentations are covered in more detail in Chapter 14. All the transitions involve switching the
image that is displayed between two images, using the method described. Instead of
transitioning between two images, however, you could actually create a transition between an
image and a black area or a white area to create the effect of a fade to black, or fade to white.

Visual Examples of each of these transitions can be found at http://www.microsoft.com/ie/
ie40/demos/transall.htm. The following are transitions provided by Dynamic HTML and
Internet Explorer:

■ Box In—Overlaps one image over another image from the center as a box until the
original image is replaced with the second image.

■ Box Out—Offers the same effect as Box In, only the box appears to shrink into the
center of the image.

■ Circle In—Similar to the Box In transition, only the image is replaced in a circular
pattern instead of a box.

■ Circle Out—Similar to Box Out, only with the shape of a circle.

Introducing the ActiveX Multimedia Controls

286 Chapter 13 Introducing Multimedia

http://www.quecorp.com

■ Wipe Up—Switches between two images by scrolling the second image over the first
from the bottom of the image to the top.

■ Wipe Down—Switches between two images by scrolling the second image over the first
from the top of the image to the bottom.

■ Wipe Right—Switches between two images by scrolling the second image over the first
from the right of the image to the left.

■ Wipe Left—Switches between two images by scrolling the second image over the first
from the left of the image to the right.

■ Vertical Blinds—Creates stripes of the second image across the first, similar to opening
vertical blinds, until the second image replaces the first.

■ Horizontal Blinds—Creates stripes of the second image across the first, similar to
opening horizontal blinds, until the second image replaces the first.

■ Checker Board Across—Replaces the first image with the second image in the pattern
of a checkerboard, starting on the left and moving toward the right.

■ Checker Board Down—Replaces the first image with the second image in the pattern
of a checkerboard, starting at the top and moving toward the bottom.

■ Random Dissolve—Replaces the pixels of the first image with pixels from the second
image in a random pattern until the image is entirely replaced. This effect can also be
used with black or white images to create a “fade to black” effect.

■ Split Vertical In—Switches from image one to image two by splitting the second image
and wiping it from the right and the left sides simultaneously.

■ Split Vertical Out—Switches from image one to image two by splitting the first image
and scrolling the halves off the screen to reveal the second image.

■ Split Horizontal In—Switches from image one to image two by splitting the second
image and wiping it from the top and the bottom of the image simultaneously.

■ Split Horizontal Out—Switches from image one to image two by splitting the first
image and scrolling the halves off the top and bottom of the screen, leaving the second
image.

■ Strips Left Down—Reveals the second image in a series of two as a series of strips that
progress from the upper-right corner of the screen, to the lower-left corner.

■ Strips Left Up—Reveals the second image in a series of two as a series of strips that
progress from the lower-right corner to the upper-left corner.

■ Strips Right Down—Reveals the second image in a series of two as a series of strips
that progress from the upper-left corner to the lower-right corner.

■ Strips Right Up—Reveals the second image in a series of two as a series of strips that
progress from the lower-left corner to the upper-right corner.

■ Random Bars Horizontal—Replaces the first image by randomly displaying horizontal
bars of the second image.

■ Random Bars Vertical—Replaces the first image by randomly displaying vertical bars
of the second image.

287

13

V
Part

Ch

Filters
The transition effects offer alternatives for switching between several images. The Filter Con-
trols also offer features for image manipulation, enabling designers to apply effects to images
within the browser window, rather than having to load an entirely new image.

With standard HTML, for example, to blur an image you would need to have two versions of
the image: one sharp and one blurry. Then you would need to somehow switch between the
two images to give the impression that the image was blurred. With Filter Controls in Dynamic
HTML, you can actually alter the image without loading a new image at all, similar to applying
a filter to the image in an image editing tool such as Photoshop. The result is the capability to
manipulate images in less time, while consuming less system resources, such as bandwidth
and file space. These filters are covered in more detail in Chapter 15.

Dynamic HTML offers several Filter Controls through ActiveX. They include the following:

■ FlipH—Enables an image to be flipped along the horizontal axis. The result is similar to
turning a page over, but still being able to see the image on the other side.

■ FlipV—Flips images along the vertical axis.

■ Gray—Converts all the colored pixels in an image to a corresponding shade of gray.
There are 256 levels of gray, and the result produces the same image with no color
details.

■ Invert—Causes the selected image to be inverted, or the color of each pixel in the image
to be mapped to the opposite color of the original.

■ Xray—Combines the effects of other Filters. It converts the image to a grayscale image
and also flattens the color depth of the image, from 256 to 16 shades of gray.

■ Alpha—Enables you to use Alpha Channel effects on images, such as specifying opacity
for an image or enabling backgrounds or other images to be seen through the image.

■ Blur—Enables you to apply a motion blur to an object, with parameters that enable you
to specify the direction of motion and the strength of the blur.

■ Chroma—Enables you to select a color in an image that will function as transparent.
This is similar to the ChromaKey effect in television, which is often used to substitute
backgrounds.

■ Drop Shadow—Creates a drop shadow around the image or element. Parameters
include the color of the shadow and the offset.

■ Glow—Creates a glowing effect around the specified object.

■ Mask—Causes any transparent pixels in an object to become solid, and any solid pixels
to become transparent, effectively inverting the image and leaving a “hole” where the
image previously was.

■ Shadow—Creates a shadow of the image or object in a specified direction and color.

■ Wave—Warps the image using a sine wave to create a rippled look over the image.

Introducing the ActiveX Multimedia Controls

288 Chapter 13 Introducing Multimedia

http://www.quecorp.com

From Here…
By now the power of Dynamic HTML should be evident. The capability to manipulate content
on a page, both during and after the page has been loaded, is compelling by itself. By using
dynamic styles and content, pages can be changed and manipulated to create new user environ-
ments and experiences. You should now also have a feel for what is possible with Dynamic
HTML through style sheets, positioning, and scripting. All these techniques have their value,
and they make up the bulk of Dynamic HTML.

■ Chapter 14, “Multimedia Transitions”—Provides an overview of multimedia technology
incorporated into Dynamic HTML. Learn about creating multimedia effects with
Dyanamic HTML, and some of the special features designed especially for multimedia,
such as the ActiveX Multimedia Controls.

■ Chapter 15, “Multimedia Filters and ActiveX Controls”—Provides detailed coverage of
the filters and Multimedia Controls that bring ActiveX technology and Dynamic HTML
together.

289

14

V
Part

Ch

T

14C H A P T E R

Introducing Transitions

Learn about how transitions enable
you to create interesting effects
when changing from one element
on the page to another.

The Art of Transition

Learn how simple it is to create
transitions by working through a
basic example.

Transition Types

Explore the 24 different transition
types that allow you a broad range
of interesting effects like wipes,
fades, and dissolves.

he aspects of Dynamic HTML covered thus far give you
quite a bit of control over how and where visual elements
are displayed on the screen. You can add and delete ele-
ments, show them or hide them, and you can even change
their positions in real time.

Dynamic HTML, however, gives you a much wider range
of multimedia effects than just the capability to manipulate
the style and contents of an element. Examples of these
expanded capabilities are transitions, filters, and path
control.

All these expanded capabilities are implemented in
Internet Explorer 4.0 as ActiveX objects. Most of these
objects are accessed by embedding them with the
<OBJECT> tag in your HTML document. Transitions and
filters, however, are so important and common that
Microsoft has added proprietary syntax to the style at-
tribute of HTML elements to enable you to use them in a
straightforward manner.

A transition is a control that enables you to show or hide a
visual element over a specified period of time. Think of the
last time you were watching a television show or a movie
and the screen faded to black. This was a transition from
the picture to black. Some of the other multimedia con-
trols available to you will be discussed in the next chapter.

Multimedia Transitions

290 Chapter 14 Multimedia Transitions

http://www.quecorp.com

Why are these controls important? They give you unparalleled control over the visual presenta-
tion of HTML content, such as images. Previously, if you wanted to do a transition, your only
option was to use either a server-side push or an animated GIF.

The capability to do this type of effect within HTML has several advantages from the server
side. First, it means that only one copy of an image must be stored, instead of anticipating
every possible circumstance.

Secondly, and possibly more important, no round trips to the server are required for this type
of multimedia effect. All the work is done on the client side, minimizing both network traffic
and server resources. ■

Using Transitions
As mentioned earlier, transitions enable you to specify how an object is shown or hidden over a
predetermined time period. The transitions are similar to those you may have seen on televi-
sion shows or movies: dissolves, wipes, boxing in or out, and so on.

To use a transition, you must specify where in the HTML document the transition will occur.
The most common place to do this is inside of a container tag. Usually, you will want to transi-
tion between one element and another, and container tags such as the <DIV> tag are HTML’s
way of grouping elements.

The FILTER CSS property specifies which transition to use. This might seem a bit strange at
first because there is a logical delineation between transitions and filters. As far as Dynamic
HTML is concerned, however, a transition is a special case of a filter.

Why is this? Think of the <DIV> tag as its own visual element, with two elements on top of each
other inside of it. Only one of these elements can be shown at any one time. A transition dis-
plays the hidden element, and simultaneously hides the currently displayed element. A filter,
on the other hand, enables you to modify the appearance of a visual element.

In this way, a transition is a filter that works over a period of time. It is the lens through which
the two elements that normally can be seen only independent of one another can now be seen
at the same time.

Setting Up the HTML Document for a Transition
The FILTER property is set to revealTrans() to set the DIV element to use transitions. All the
code excerpts within this section are numbered corresponding to their placement in the final
code for this transition in listing 14.1. The following code excerpt starts building the DIV ele-
ment by setting the FILTER property:

31. <DIV id=”transEx”
35. STYLE=”FILTER:revealTrans()”>
47. </DIV>

Because you’ll be placing elements on top of one another, it makes sense to go ahead and use
absolute positioning to ensure that the elements will indeed stack on top of each other. The

291

14

V
Part

Ch

width of this DIV element will be set to 500, and the height will be set to 350. The background
will be set to black. Because the STYLE property of this element has already been set up, you
just need to add this CSS information to the STYLE:

31. <DIV id=”transEx”
33. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
34. background-color:black;
35. FILTER:revealTrans()”>
47. </DIV>

Now that you’ve set up the DIV element, you need to decide what to place inside the element.
The example in this chapter uses an image of a tiger (see figure 14.1) called “tiger.jpg.”

To keep the images in the chapter as clear as possible, this example transitions to black instead
of to another image. Begin by adding the tiger image and setting its positioning to absolute,
with a width of 500, a height of 350, and a black background.

In addition, you need to ensure that the image is positioned at the top left of the DIV element,
so that the top property is set to 0 and the left property to 0:

37. <IMG id=”ImageFrm”
38. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
39. TOP:0;LEFT:0"
40. SRC=”tiger.jpg”>

Now, because you want to transition to black, you need to have an element, which is just a place-
holder, that happens to be black. The easiest way of doing this is to use another DIV element.

Begin by creating this DIV element and placing it as the 0 top and 0 left position in order to
overlap the tiger image exactly. For this same reason, you want it to have a width of 500 and a
height of 350 and a black background:

FIG. 14.1
Using a simple image
of a tiger for multimedia
transitions.

Using Transitions

292 Chapter 14 Multimedia Transitions

http://www.quecorp.com

42. <DIV id=”FadeTo”
43. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
44. TOP:0;LEFT:0;
45. BACKGROUND:black”>
47. </DIV>

Because this is the element that will be transitioned to, you want the element initially to not be
visible. This is done by setting the VISIBILITY property of the element’s CSS style to hidden:

42. <DIV id=”FadeTo”
43. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
44. TOP:0;LEFT:0;
45. BACKGROUND:black
46. VISIBILITY:hidden”>
47. </DIV>

This almost completes the necessary work for the body of the document. The final thing you
need is a trigger to start the transition. You can fulfill this need by defining a function called
startTrans() that is called when the DIV element that contains the transition is clicked. The
following code binds the startTrans() function to the DIV element and constructs the final
version of the body of the document:

29. <BODY>
30.
31. <DIV id=”transEx”
32. onclick=”startTrans()”
33. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
34. background-color:black;
35. FILTER:revealTrans()”>
36.
37. <IMG id=”ImageFrm”
38. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
39. TOP:0;LEFT:0"
40. SRC=”tiger.jpg”>
41.
42. <DIV id=”FadeTo”
43. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
44. TOP:0;LEFT:0;
45. BACKGROUND:black
46. VISIBILITY:hidden”>
47. </DIV>
48.
49. </DIV>
50.
51. </BODY>

Scripting the Transition
Now you want to build the startTrans() function that is evaluated when the encompassing
<DIV> tag is clicked. When controlling transitions, you need to ensure that four aspects of their
control are considered:

■ The Apply() method of the transition must be called to start the transition.

■ The type of transition to be executed must be set.

293

14

V
Part

Ch

■ The element that you want to transition to should be set to be visible and the element
that you want to transition from should be set to be hidden.

■ The play() method of the transition is called, with the speed of the transition passed as
an argument.

To control these aspects of transitions, you need to have a reference to the transition object
itself. This object can be returned from the element that contains the transition through the
filters collection:

transEx.filters

Because only one transition is set in this case, you want the first element of this collection,
which can be returned with item(0):

transEx.filters.item(0)

As mentioned previously, the first thing that you must do in the script is call the Apply()
method of the transition. This informs the browser not to update the contents of the containing
element because a transition is about to take place.

The startTrans() function begins by calling the Apply() method of the transition:

09. function startTrans() {
10.
12. transEx.filters.item(0).Apply();
13.
24. }

Next, you need to set the type of transition to execute. A property in the transition object called
Transition is set depending on the transition desired. The Transition property can contain an
integer in the range 0 to 23, with each number corresponding to a particular type of transition.
The types of transitions are listed in table 14.1, and each will be discussed in detail later in this
chapter:

Table 14.1 Transition Types

Transition Name Integer ID

Box In 0

Box Out 1

Circle In 2

Circle Out 3

Wipe Up 4

Wipe Down 5

Wipe Right 6

Wipe Left 7

Vertical Blinds 8

continues

Using Transitions

294 Chapter 14 Multimedia Transitions

http://www.quecorp.com

Table 14.1 Continued

Transition Name Integer ID

Horizontal Blinds 9

Checkerboard Across 10

Checkerboard Down 11

Random Dissolve 12

Split Vertical In 13

Split Vertical Out 14

Split Horizontal In 15

Split Horizontal Out 16

Strips Left Down 17

Strips Left Up 18

Strips Right Down 19

Strips Right Up 20

Random Bars Horizontal 21

Random Bars Vertical 22

Random 23

For this example, set the transition type to 12, which will cause a Random Dissolve Transition
to occur. The Random Dissolve Transition causes the element that is being transitioned from to
disappear, pixel by pixel, in a random fashion as shown in figure 14.2. The syntax for setting the
Random Dissolve Transition is as follows:

09. function startTrans() {
10.
12. transEx.filters.item(0).Apply();
13.
14. // Set the transition to Random Dissolve
15. transEx.filters.item(0).Transition = 12;
16.
24. }

The next step is to switch the visibility of the two elements that will be transitioned between.
This informs the transition control about which element to transition to and which element to
transition from. In this case, you set the tiger image to be hidden and set the blank black area
to be displayed (which is accomplished by setting its visibility property to the blank string):

09. function startTrans() {
10.
12. transEx.filters.item(0).Apply();
15. transEx.filters.item(0).Transition = 12;
16.

295

14

V
Part

Ch

17. // Prepare the elements for the transition
18. ImageFrm.style.visibility = “hidden”;
19. FadeTo.style.visibility = “”;
24. }

This may seem a bit disconcerting at first, because it seems to imply that the two images will
be switched immediately. Why does this appear to be the case? In any other case, when you
switch the visibility of an item, the change is executed immediately.

This is a special case because the Apply() method of the transition was previously called. This
method causes the browser to temporarily suspend immediate changes to the visible state of
the elements contained within the transitioned element. This is the trigger that signals that the
transition has begun. Now all that needs to be done is to actually do the transition itself.

The final step in scripting the transition is to actually cause the transition to execute. This is
accomplished with the play() method of the transition. One argument is passed to the play()
method—speed.

The speed argument specifies the number of seconds over which to execute the transition. In
this case, you set the number of seconds to 5:

09. function startTrans() {
10.
12. transEx.filters.item(0).Apply();
15. transEx.filters.item(0).Transition = 12;
18. ImageFrm.style.visibility = “hidden”;
19. FadeTo.style.visibility = “”;
20.
21. // Play the transition
22. transEx.filters.item(0).play(5);
23.
24. }

This means that the transitions will occur over 5 seconds, after which the element transitioned
from will have completely disappeared and the element transitioned to will be completely visible.

Implementing the Transition
Now that you’ve learned about the HTML and the scripting portions of transitions, take a look
at a transition firsthand. Listing 14.1 places the body and scripting portions of the transition
together in an example file (ch14ex01.htm):

Listing 14.1 Creating a Random Dissolve Transition Between Images

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Chapter 14, Example 1
05. </TITLE>
06.
07. <SCRIPT LANGUAGE=”JavaScript”>
08.

continues

Using Transitions

296 Chapter 14 Multimedia Transitions

http://www.quecorp.com

Listing 14.1 Continued

09. function startTrans() {
10.
11. // Start the transition definition process
12. transEx.filters.item(0).Apply();
13.
14. // Set the transition to Random Dissolve
15. transEx.filters.item(0).Transition = 12;
16.
17. // Prepare the elements for the transition
18. ImageFrm.style.visibility = “hidden”;
19. FadeTo.style.visibility = “”;
20.
21. // Play the transition
22. transEx.filters.item(0).play(5);
23.
24. }
25. </SCRIPT>
26. </HEAD>
27.
28.
29. <BODY>
30.
31. <DIV id=”transEx”
32. onclick=”startTrans()”
33. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
34. background-color:black;
35. FILTER:revealTrans()”>
36.
37. <IMG id=”ImageFrm”
38. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
39. TOP:0;LEFT:0"
40. SRC=”tiger.jpg”>
41.
42. <DIV id=”FadeTo”
43. STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
44. TOP:0;LEFT:0;
45. BACKGROUND:black;
46. VISIBILITY:hidden”>
47. </DIV>
48.
49. </DIV>
50.
51. </BODY>
52. </HTML>

Figure 14.2 shows this transition in action. When the page is first loaded, only the image of the
tiger is shown. As soon as the user clicks the tiger, however, the transition is triggered and the
tiger slowly dissolves to black.

297

14

V
Part

Ch

In this example, the transition starts when the user clicks the image; however, this is not the
only way to trigger transitions.

Any event can be bound to the function to start the transition. You might want the transition to
start whenever the user passes the mouse pointer over the element to be transitioned. You
could also trigger the transition with a different element—perhaps a button that is identified as
the controller for the transition. Refer back to Chapter 7, “Event Handling,” for more examples
of the types of events that could be bound to.

Transition Types
Many types of transitions are available to use in your Dynamic HTML documents. Choosing
which one to use can be confusing. This section covers the different transitions available to you
and gives an example of each one in action.

To make it easier to introduce these transitions into your own Dynamic HTML documents, an
example <DIV> tag that can be placed directly into your Dynamic HTML documents will be
provided with each example.

In addition to specifying the type of transition to be executed with the Transition property of
the transition object externally, you can also specify the transition type as an argument to the
revealTrans() function. To specify the transition type in this way, you still specify the transition
by setting the Transition property to the transition required. However, instead of doing so in a
script, you do this as an argument to the revealTrans() function:

revealTrans(Transition = <transition_id>)

FIG. 14.2
The image of the tiger
dissolves to black.

Transition Types

298 Chapter 14 Multimedia Transitions

http://www.quecorp.com

Therefore, if you wanted to set the transition type from listing 14.1 to 1 (causing a Box Out
transition) inside the DIV element, you would use the following code:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=1)”> // Set the transition

The examples in the sections that follow on each of the transition types provide the appropriate
version of this DIV element. These DIV elements can then be cut and pasted into the example
in listing 14.1. The one additional modification that you will need to make to the example is the
removal of the line that sets the transition in the startTrans() function, because you won’t need
it any longer. Therefore, remove line 15 from the example in listing 14.1 because the transition
type is being set in revealTrans():

 transEx.filters.item(0).Transition = 12;

Box In
With the Box In Transition (see figure 14.3), the element that is being transitioned to replaces
the element being transitioned from by starting from the outside going inward in a box. This
causes the image being transitioned from to disappear, becoming a smaller and smaller box.

FIG. 14.3
Using the Box In
Transition to hide the
tiger.

The Box In Transition has a transition ID of 0, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=0)”>

299

14

V
Part

Ch

Box Out
The Box Out Transition (see figure 14.4) is the exact opposite of the Box In Transition. When
you run the Box Out Transition, the element being transitioned to starts out as a small box. This
box grows larger and larger until it completely replaces the element being transitioned from.

The Box Out Transition has a transition value of 1, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=1)”>

Circle In
The Circle In Transition (see figure 14.5) causes the element being transitioned from to be
seen in a smaller and smaller circular window until it completely disappears. While this is oc-
curring, the image being transitioned to becomes the growing area that surrounds the disap-
pearing circle.

FIG. 14.4
Using the Box Out
Transition to hide the
tiger.

Transition Types

300 Chapter 14 Multimedia Transitions

http://www.quecorp.com

The Circle In Transition has a transition value of 2, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=2)”>

Circle Out
The Circle Out Transition (see figure 14.6) is the exact opposite of the Circle In Transition. When
the Circle In Transition is executed, the element being transitioned to starts out as a small circle.
This circle grows larger and larger until it completely replaces the element being transitioned from.

FIG. 14.5
Using the Circle In
Transition to hide the
tiger.

FIG. 14.6
Using the Circle Out
Transition to hide the
tiger.

301

14

V
Part

Ch

The Circle Out Transition has a transition value of 3, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=3)”>

Wipe Up
The Wipe Up Transition (see figure 14.7) causes the element being transitioned into to replace the
element being transitioned from as if it were being wiped upward onto the screen. This is done by
replacing the horizontal lines of the image being replaced one by one, starting at the bottom.

The Wipe Up Transition has a transition value of 4, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=4)”>

Wipe Down
The Wipe Down Transition (see figure 14.8) is the opposite of the Wipe In Transition. Instead
of the element being replaced starting at the bottom and moving to the top, the element is
replaced horizontally line by line, starting at the top of the element.

FIG. 14.7
Using the Wipe Up
Transition to hide the
tiger.

Transition Types

302 Chapter 14 Multimedia Transitions

http://www.quecorp.com

The Wipe Down Transition has a transition value of 5, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=5)”>

Wipe Right
The Wipe Right Transition (see figure 14.9) is similar to the Wipe Up and Wipe Down Transi-
tions, except that vertical lines are used. First, the leftmost vertical line of the element is re-
placed, then the rest are replaced vertical line by line moving to the right.

FIG. 14.8
Using the Wipe Down
Transition to hide the
tiger.

FIG. 14.9
Using the Wipe Right
Transition to hide the
tiger.

303

14

V
Part

Ch

The Wipe Right Transition has a transition value of 6, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=6)”>

Wipe Left
The Wipe Left Transition (see figure 14.10) is the opposite of the Wipe Right Transition. In-
stead of the replacement of the vertical lines starting at the left side of the element, the lines of
the element are replaced starting at the right side.

The Wipe Left Transition has a transition value of 7, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=7)”>

Vertical Blinds
The Vertical Blinds Transition (see figure 14.11) works much like a set of blinds that you may
have on your window. Imagine that the element being transitioned from is painted on your
blinds and the element being transitioned to is placed behind the blinds.

Now, imagine adjusting the blinds so that they cannot be seen, revealing what is behind them.
This is similar to the process that is used by the Vertical Blinds Transition. The element
transitioned from is broken into equal-sized vertical segments, then these segments are re-
placed one vertical line at a time by the element being transitioned to.

FIG. 14.10
Using the Wipe Left
Transition to hide the
tiger.

Transition Types

304 Chapter 14 Multimedia Transitions

http://www.quecorp.com

The Vertical Blinds Transition has a transition value of 8, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=8)”>

Horizontal Blinds
The Horizontal Blinds Transition (see figure 14.12) is much like the Vertical Blinds Transition,
except that the element transitioned from is broken into equal sized horizontal segments, then
these segments are replaced a horizontal line at a time by the element being transitioned to.

FIG. 14.11
Using the Vertical Blinds
Transition to hide the
tiger.

FIG. 14.12
Using the Horizontal
Blinds Transition to hide
the tiger.

305

14

V
Part

Ch

The Horizontal Blinds Transition has a transition value of 9, as shown in the following DIV
element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=9)”>

Checkerboard Across
The Checkerboard Across Transition (see figure 14.13) breaks the transition into a checker-
board pattern with alternating squares containing pieces of the transitioned from and
transitioned to elements. Then, the boxes containing pieces of the element being transitioned
to grow horizontally until they completely replace the element being transitioned from.

The Checkerboard Across Transition has a transition value of 10, as shown in the following
DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=10)”>

Checkerboard Down
The Checkerboard Down Transition (see figure 14.14) is much like the Checkerboard Across
Transition, except that the alternating squares containing the pieces of the element
transitioned to grow vertically instead of horizontally, eventually replacing the element
transitioned from.

FIG. 14.13
Using the Checkerboard
Across Transition to
hide the tiger.

Transition Types

306 Chapter 14 Multimedia Transitions

http://www.quecorp.com

The Checkerboard Down Transition has a transition value of 11, as shown in the following DIV
element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=11)”>

Random Dissolve
The Random Dissolve Transition (see figure 14.15) starts by randomly picking pixels in the ele-
ment being transitioned from and replacing them with pixels from the element being transitioned
to. This process is repeated until the entire image being transitioned from has been replaced.

FIG. 14.14
Using the Checkerboard
Down Transition to hide
the tiger.

FIG. 14.15
Using the Random
Dissolve Transition to
hide the tiger.

307

14

V
Part

Ch

The Random Dissolve Transition has a transition value of 12, as shown in the following DIV
element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=12)”>

Split Vertical In
The Split Vertical In Transition (see figure 14.16) is much like a combination of the Wipe Right
and Wipe Left Transitions running at the same time. The transition starts by replacing a verti-
cal line from both the left and right sides of the element being transitioned from and continues
inward until the element is completely replaced.

The Split Vertical In Transition has a transition value of 13, as shown in the following DIV
element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=13)”>

Split Vertical Out
The Split Vertical Out Transition (see figure 14.17) is the opposite of the Split Vertical In Tran-
sition. It starts by dividing the element in half vertically and replacing the two vertical lines in
the center. It then moves outward, replacing more vertical lines toward the right and left edges
of the screen until the element being transitioned from is replaced.

FIG. 14.16
Using the Split Vertical
In Transition to hide the
tiger.

Transition Types

308 Chapter 14 Multimedia Transitions

http://www.quecorp.com

The Split Vertical Out Transition has a transition value of 14, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=14)”>

Split Horizontal In
The Split Horizontal In Transition (see figure 14.18) is like a combination of the Wipe Up and
Wipe Down Transitions running at the same time. The transition starts by replacing a horizon-
tal line from both the top and bottom of the element being transitioned from and continues
inward until the element is completely replaced.

FIG. 14.17
Using the Split Vertical
Out Transition to hide
the tiger.

FIG. 14.18
Using the Split
Horizontal In Transition
to hide the tiger.

309

14

V
Part

Ch

The Split Horizontal In Transition has a transition value of 15, as shown in the following DIV
element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=15)”>

Split Horizontal Out
The Split Horizontal Out Transition (see figure 14.17) is the opposite of the Split Horizontal In
Transition. It starts by dividing the element in half horizontally and replacing the two horizon-
tal lines in the center. It then moves outward, replacing more horizontal lines toward the top
and bottom edges of the screen until the element being transitioned from is replaced.

The Split Horizontal Out Transition has a transition value of 16, as shown in the following DIV
element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=16)”>

Strips Left Down
A good way to think of a Strips Left Down Transition (see figure 14.20) is to imagine it as a
wipe that starts at the upper-right corner of the element being transitioned from and wipes
down and to the left diagonally, replacing the image transitioned from as it goes along.

FIG. 14.19
Using the Split
Horizontal Out
Transition to hide the
tiger.

Transition Types

310 Chapter 14 Multimedia Transitions

http://www.quecorp.com

The Strips Left Down Transition has a transition value of 17, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=17)”>

Strips Left Up
The Strips Left Up Transition (see figure 14.21) is much like the Strips Left Down Transition,
except that it starts at the lower-right corner of the element being replaced. It then replaces the
element with the element being transitioned to by wiping up and to the left.

FIG. 14.20
Using the Strips Left
Down Transition to hide
the tiger.

FIG. 14.21
Using the Strips Left Up
Transition to hide the
tiger.

311

14

V
Part

Ch

The Strips Left Up Transition has a transition value of 18, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=18)”>

Strips Right Down
The Strips Right Down Transition (see figure 14.22) is much like the Strips Right Up Transi-
tion, except that it starts at the upper-left corner of the element being replaced. It then replaces
the element with the element being transitioned to by wiping down and to the right.

The Strips Right Down Transition has a transition value of 19, as shown in the following DIV
element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=19)”>

Strips Right Up
The Strips Right Up Transition (see figure 14.23) is much like the Strips Right Down Transi-
tion, except that it starts at the lower-left corner of the element being replaced. It then replaces
the element with the element being transitioned to by wiping up and to the right.

FIG. 14.22
Using the Strips Right
Down Transition to hide
the tiger.

Transition Types

312 Chapter 14 Multimedia Transitions

http://www.quecorp.com

The Strips Right Up Transition has a transition value of 20, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=20)”>

Random Bars Horizontal
The Random Bars Horizontal Transition (see figure 14.24) is one of the more interesting transi-
tions. It randomly selects horizontal lines of varying widths from the element being transitioned
from and replaces them with equally sized lines from the element being transitioned to. It repeats
this process until the transition between the two elements is complete.

FIG. 14.23
Using the Strips Right
Up Transition to hide the
tiger.

FIG. 14.24
Using the Random Bars
Horizontal Transition to
hide the tiger.

313

14

V
Part

Ch

The Random Bars Horizontal Transition has a transition value of 21, as shown in the following
DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=21)”>

Random Bars Vertical
The Random Bars Vertical Transition (see figure 14.25) is much like the Random Bars Hori-
zontal Transition, except with vertical lines instead of horizontal ones. It randomly selects
vertical lines of varying widths from the element being transitioned from and replaces them
with equally sized lines from the element being transitioned to. It repeats this process until the
transition between the two elements is complete.

The Random Bars Vertical Transition has a transition value of 22, as shown in the following
DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=22)”>

FIG. 14.25
Using the Random Bars
Vertical Transition to
hide the tiger.

Transition Types

314 Chapter 14 Multimedia Transitions

http://www.quecorp.com

Random
The Random Transition randomly selects one of the other 23 transitions and executes it. If
you’re looking for an effect that changes every time it is executed, this is the one.

The Random Transition has a transition ID of 23, as shown in the following DIV element:

<DIV id=”transEx”
 onclick=”startTrans()”
 STYLE=”POSITION:ABSOLUTE;WIDTH:500;HEIGHT:350;
 background-color:black;
 FILTER:revealTrans(Transition=23)”>

From Here…
Transitions are arguably the most important multimedia controls that Dynamic HTML pro-
vides, but filters and the other multimedia controls aren’t far behind in importance.

Chapter 15, “Multimedia Filters and Multimedia ActiveX Controls,” discusses these multimedia
controls and the ways they can further enhance your Dynamic HTML documents.

315

15

V
Part

Ch

I

15C H A P T E R

Differentiating Multimedia
Objects

Differentiate between transitions,
filters, and other multimedia
objects.

Filters

Learn the motives behind, impact
of, and techniques for setting up
filters in your HTML documents.

Filter Types

Discover the intricacies of and how
to implement all the multimedia
filters offered by Dynamic HTML.
Filters are one of the bedrock
aspects of Dynamic HTML multi-
media and knowing the types
available can be quite helpful.

Multimedia Filters and
ActiveX Controls

n addition to transitions, Dynamic HTML offers quite a
few other multimedia effects that can be applied to your
HTML elements.

These effects can be divided into two general classes,
separated by how they are specified and controlled from
within your Dynamic HTML documents.

The first class of multimedia effects is a Microsoft exten-
sion to CSS. These effects are specified in a style block or
with the STYLE attribute for an element. You’ve already
seen this type of effect in the last chapter with transitions.
Filters are specified in much the same way and will be the
first topic covered in this chapter.

The second class of multimedia effects must be added via
an <OBJECT> tag. These Multimedia Controls are ActiveX
objects and are treated as any other ActiveX object you
might use, except you are guaranteed that they will be
present in every instance of Internet Explorer 4.0 because
they ship with it.

Although these controls are certainly no less powerful
than the transitions and filters, they are more complicated
to use because you must use quite a bit of syntax to work
with them. This can be especially confusing if you have
never worked with ActiveX objects. ■

316 Chapter 15 Multimedia Filters

http://www.quecorp.com

It is important to note that the transition and filter effects are ActiveX Controls as well.
However, by making them accessible via the STYLE property of elements that use them,

they are much simpler to specify and control. In addition, there is a much higher probability that their
functionality may be duplicated in other browsers, even if those browsers do not support ActiveX. ■

Introducing Filters
A filter is a control that enables you to directly apply effects to the contents of an element. A
blur filter, for instance, enables you to make an element blurry to the extent that you specify.

Many types of filters are available in Dynamic HTML. The following list presents the filters
currently available, which will be discussed individually in detail throughout the rest of the
chapter:

■ X-Ray

■ Drop Shadow

■ Flip Horizontal

■ Flip Vertical

■ Grayscale

■ Invert

■ Lights

■ Mask

■ Motion Blur

■ Opacity

■ Shadow

■ Wave

■ Glow

■ Chromakey

Much like transitions, the capability to apply filters on the client side is a great boon to HTML
developers. Prior to Dynamic HTML, manipulating the way an image was displayed required
performing the manipulation before load time (or in sophisticated situations possibly generated
by a CGI script) when it was downloaded to the user.

Generating the image with the desired effect ahead of time causes a great deal of problems on
the server side. For one thing, every conceivable effect that you want to perform must be
thought of and generated before load time.

Placing all the effects that may be performed on the image on the server also causes server
disk and scalability problems. Storage resources must be used to store all the varied images.
Furthermore, a round trip is performed every time the next image effect is desired, congesting
the network and limiting scalability.

N O T E

317

15

V
Part

Ch

Setting Up Filters in Your HTML
Adding filters to your Dynamic HTML document is actually quite straightforward. The first
thing that you need to specify is a container for the element to which you will be applying the
filter.

Usually, you will want to use a <DIV> element as the container for the element to be filtered
because it is the most versatile container. You will want to give this container a unique ID that it
can be referenced by because the filter will be associated with the container, not directly with
the image that will be filtered. This is an important point. Think of the container that encapsu-
lates the element to be filtered as a lens through which that element is filtered. This approach
has one major advantage: You can apply the same filters to whatever you place inside the con-
tainer, which can change whenever you please (see Chapter 10, “Dynamic Content”). The
following example assigns the container ID as “filtEx.”

To effectively see the difference before and after executing the filter, the following example
delays the running of the filter until the user presses the mouse button down on the container.
The function that will be called is startFilter().

This example also uses absolute positioning to place the image in an arbitrary location on the
screen. This is a good practice to get into in case you want to place multiple elements in the
container because it enables you to stack them (see Chapter 9, “Layout and Positioning”).

Given these requirements, the first thing you need to do is construct the required <DIV> ele-
ment as follows:

<DIV id=”filtEx”
 STYLE=”POSITION:ABSOLUTE;TOP:100;LEFT:200; WIDTH:450;HEIGHT:300"
 onclick=”startFilter()”>
</DIV>

Next, the element you want to apply the filter to should be placed inside this <DIV> element. This
chapter uses an image as the element to filter; however, you can use any type of element. You can
even apply filters to raw text. The image of an eagle, “eagle.jpg,” is used consistently throughout
this chapter so you can get a good idea of the effects achieved through filters (see fig. 15.1).

The following code excerpt from listing 15.1 (displayed in its entirety in the following section,
“X-Ray Filter”) adds an IMG element specifying the image of the eagle to the <DIV> element:

18. <DIV id=”filtEx”
19. STYLE=”POSITION:ABSOLUTE;TOP:100;LEFT:200;WIDTH:450;HEIGHT:300"
20. onclick=”startFilter()”>
21.
22. <IMG id=”theImg” SRC=”eagle.jpg”
23.
24. </DIV>

Believe it or not, this is the extent of the HTML required to set up to use filters. Now that you’ve
got a container through which to use the filter, you just need to write a JavaScript function that
sets up the filter to be used.

Setting Up Filters in Your HTML

318 Chapter 15 Multimedia Filters

http://www.quecorp.com

Unlike transitions, specifying the filter to use is more involved than just setting a number from
a list. You set a filter by specifying the filter via the id.style.filter property of the container object.

The set value of the id.style.filter property will vary from filter to filter. Now take a look at the
next section, which builds an example around the X-Ray Filter that you will use throughout the
rest of the chapter with each filter.

X-Ray Filter
The X-Ray Filter (see fig. 15.2) makes the element being filtered appear as if an x-ray were
taken of it. This effect is achieved by converting the element to a very low color depth black-
and-white visual representation and reversing the colors of the element (black becomes white,
and so forth), giving it a photographic-negative feel.

FIG. 15.1
An image of an eagle
waiting to be filtered.

FIG. 15.2
Applying the X-Ray Filter
to the image of the
eagle.

319

15

V
Part

Ch

When the filter is set in Dynamic HTML with the id.style.filter property, the value that is passed
is a string that contains the filter function.

A filter function is the name of the filter followed by any arguments it may contain as param-
eters to the function. You’ve already seen an example of this with transitions in Chapter 14,
“Multimedia Transitions.”

You specify the X-Ray Filter by setting the filter type to xray(). This filter function takes one
argument, “enabled,” which is set to 0 or 1 depending on whether you want the filter to take
effect (1) or not (0).

In this case, you want to enable the filter, so set the filter function to 1 as follows:

filtEx.style.filter = “xray(enabled = 1)”;

Because you want this filter to be executed only when the mouse button is pressed on the
container, you need to set the filter in the startFilter() event handler as follows (taken from the
final syntax in listing 15.1):

09. function startFilter() {
10. filtEx.style.filter = “xray(enabled=1)”;
11. }

As soon as you set the filter type of the container object, the filter takes effect.

There is an important difference between working with transitions and working with filters:
when working with transitions, you need to call methods of the transition object to let it

know you will be executing a transition; but with filters, the mere act of setting the filter executes it. ■

Now that you’ve created all the pieces required to implement the X-Ray Filter, it’s time to put
them together into an example and take a look at the results. Save the following file as
“ch15ex01.htm”:

Listing 15.1 Implementing a Basic Filter

01. <HTML>
02. <HEAD>
03. <TITLE>
04. Chapter 15, Example 1
05. </TITLE>
06.
07. <SCRIPT LANGUAGE=”JavaScript”>
08.
09. function startFilter() {
10. filtEx.style.filter = “xray(enabled=1)”;
11. }
12. </SCRIPT>
13.
14. </HEAD>
15.
16. <BODY>
17.

N O T E

continues

X-Ray Filter

320 Chapter 15 Multimedia Filters

http://www.quecorp.com

18. <DIV id=”filtEx”
19. STYLE=”POSITION:ABSOLUTE;TOP:100;LEFT:200;WIDTH:450;HEIGHT:300"
20. onclick=”startFilter()”>
21.
22.
23.
24. </DIV>
25.
26. </BODY>
27. </HTML>

Although listing 15.1 shows the code for the X-Ray in its entirety, the sections on the individual
filters that follow will only provide the startFilter() function definition that occurs on lines 9–11
within the <SCRIPT> tags. The function definition provided with each filter can be cut-and-
pasted into the code in listing 15.1 to generate the example figures provided with each filter.

Drop Shadow Filter
The Drop Shadow Filter (see fig. 15.3) places a colored, solid silhouette of the element being
filtered behind the element. The filter function that is passed for the Drop Shadow Filter is
dropshadow().

Listing 15.1 Continued

FIG. 15.3
Applying the Drop
Shadow Filter to the
image of the eagle.

You can control the following aspects of the silhouette by changing the corresponding param-
eters to the filter function:

■ offx—The number of pixels to set the shadow off on the x axis. If you specify a positive
value, the shadow is offset to the right. If you specify a negative value, it is offset to the
left.

321

15

V
Part

Ch

■ offy—The number of pixels to set the shadow off on the y axis. If you specify a positive
value, the shadow is offset to the bottom. If you specify a negative value, it is offset to the
top.

■ color—The color of the shadow, expressed in the standard #RRGGBB HTML format.

■ enabled—0 if the filter is disabled, 1 if enabled

Suppose, for example, that you wanted a drop shadow to appear as if a light were placed
slightly above and to the left of your element. Note that the drop shadow does not affect the
element that is being shadowed at all; it just places a shadow by it. So you need to make sure
the container that the element is in is slightly larger than the element being shadowed.

For illustration purposes here, to keep the effect slight, you need to keep the offsets relatively
small, say 10 pixels. Because the light would be shining from the upper left, the shadow should
appear to the lower right. This means that you will want to make the offx and offy offsets posi-
tive. Therefore, you will want to set offx to 10 and offy to 10 as well.

The shadow can be painted in any color desired. This example applies a medium gray shadow.
Medium gray in RGB format is #888888 (RGB and Hexadecimal color codes are referenced in
Appendix F, “Browser-Safe Hexadecimal Chart”). The following code pulls this all together into
the filter function:

dropshadow(offx=10,offy=10,color=#888888,enabled=1)

Finally, you need to place this filter function into the startFilter() function, ready to be pasted
into the HTML code in listing 15.1 as lines 9–11. The results of running this filter on the eagle
image are shown in figure 15.3.

function startFilter() {
 filtEx.style.filter = “dropshadow(offx=10,offy=10,color=#888888,enabled=1)”;
}

Flip Horizontal Filter
The Flip Horizontal Filter (see fig. 15.4) takes the pixels that make up the element that the
filter is applied to and reverses their order, giving the impression that the element has been
flipped upon its horizontal axis.

This effect is created by taking the first vertical line in the image and making it the last vertical
line, then taking the second and making it the second to last vertical line, repeated throughout
the entire image.

The Flip Horizontal Filter function is represented by fliph() and takes only one argument,
“enabled,” which is set to 0 if the filter is disabled and set to 1 if the filter is enabled.

The following line of code displays the standard version of this filter function:

fliph(enabled=1)

Finally, you need to place this filter function into the startFilter() function, ready to be pasted
into the HTML code in listing 15.1 as lines 9–11. The results of running the Flip Horizontal
Filter on the eagle image are shown in figure 15.4.

Flip Horizontal Filter

322 Chapter 15 Multimedia Filters

http://www.quecorp.com

function startFilter() {
 filtEx.style.filter = “fliph(enabled=1)”;
}

Flip Vertical Filter
The Flip Vertical Filter (see fig. 15.5) is much like the Flip Horizontal Filter, except that it mir-
rors the element along its vertical axis, giving the impression that the element has been flipped
along this vertical axis.

This effect is achieved by taking the first horizontal line in the image and making it the last
horizontal line, then taking the second and making it the second to last horizontal line, re-
peated throughout the entire image.

FIG. 15.4
Applying the Flip
Horizontal Filter to the
image of the eagle.

FIG. 15.5
Applying the Flip Vertical
Filter to the image of the
eagle.

323

15

V
Part

Ch

The Flip Vertical Filter function is represented by flipv() and takes only one argument, “en-
abled,” which is set to 0 if the filter is disabled and set to 1 if the filter is enabled.

The following line of code displays the standard version of this filter function:

flipv(enabled=1)

Finally, you need to place this filter function into the startFilter() function, ready to be pasted
into the HTML code in listing 15.1 as lines 9–11. The results of running the Flip Vertical Filter
on the eagle image are shown in figure 15.5.

function startFilter() {
 filtEx.style.filter = “flipv(enabled=1)”;
}

Grayscale Filter
The Grayscale Filter (see fig. 15.6) takes the element that the filter is being applied to and
removes all color information that the element contains. This makes the element appear as if it
were being viewed on a grayscale monitor.

It’s important to note that rendering the element in grayscale is different from rendering it in
black and white. With a black-and-white image, only two colors can be worked with, usually
leading to a great deal of dithering. When the element is shown in grayscale, however, a shade
of gray is chosen to represent the different color.

FIG. 15.6
Applying the Grayscale
Filter to the image of
the eagle.

The Grayscale Filter function is represented by gray() and takes only one argument, “enabled,”
which is set to 0 if the filter is disabled and set to 1 if the filter is enabled.

The following line of code displays the standard version of this filter function:

gray(enabled=1)

Grayscale Filter

324 Chapter 15 Multimedia Filters

http://www.quecorp.com

Finally, you need to place this filter function into the startFilter() function, ready to be pasted
into the HTML code in listing 15.1 as lines 9–11. The results of running the Grayscale Filter on
the eagle image are shown in figure 15.6.

function startFilter() {
 filtEx.style.filter = “gray(enabled=1)”;
}

Invert Filter
The Invert Filter (see fig. 15.7) causes the element to appear as a photographic negative of the
element. This effect is achieved by reversing the hue, saturation, and brightness values of the
element.

FIG. 15.7
Applying the Invert Filter
to the image of the
eagle.

The Invert Filter function is represented by invert() and takes only one argument, “enabled,”
which is set to 0 if the filter is disabled and set to 1 if the filter is enabled.

The following line of code displays the standard version of the Invert Filter function:

invert(enabled=1)

Finally, you need to place the Invert Filter function into the startFilter() function, ready to be
pasted into the HTML code in listing 15.1 as lines 9–11. The results of running the Invert Filter
on the eagle image are shown in figure 15.7.

function startFilter() {
 filtEx.style.filter = “invert(enabled=1)”;
}

325

15

V
Part

Ch

Lights Filter
The Lights Filter (see fig. 15.8) is one of the most interesting and compelling filters that Dy-
namic HTML provides. Normally, one element displays with the same brightness as every
other element on the page, as if a generic ambient light were shining on every element.

The Lights Filter enables you to change this by applying light sources to your element as if
they were the only lights being shone on the element.

FIG. 15.8
Lights Filter with an
ambient and point light
source.

Setting up the Lights Filter function itself is quite straightforward. The filter function for the
Lights Filter is light()and takes only one argument, “enabled,” which is set to 0 if the filter is
disabled and set to 1 if the filter is enabled.

The following line of code displays the standard version of the Lights Filter function:

light(enabled=1)

The Lights Filter becomes considerably more interesting when you consider that you have to
add light sources to shine upon the element being filtered. The Lights Filter has several types
of light that can be applied to your element, provided by variations of Ambient light and Point
light.

Ambient light is added to the filter by calling the addAmbient() method of the filter. Ambient
light is much like any diffused lighting that may be present in your home. It is light that illumi-
nates an area, but does not appear to come from any one place. The addAmbient() method
takes four arguments:

■ R—The red value of the light, expressed in magnitude of saturation. The value can range
from 0 being lowest to 255 being highest.

■ G—The green value of the light, expressed in magnitude of saturation. The value can
range from 0 being lowest to 255 being highest.

Lights Filter

326 Chapter 15 Multimedia Filters

http://www.quecorp.com

■ B—The blue value of the light, expressed in magnitude of saturation. The value can
range from 0 being lowest to 255 being highest.

■ strength—The intensity of the light shining upon the element, expressed as an integer
from 0 to 255, with intensity increasing with the value of the integer.

When you add ambient light to your filter, not only can you specify the intensity of the light, but
also the color of the light. Therefore, if you wanted to approximate sunlight instead of a pure
white light, you could add a bit of yellow to the light. You could even approximate the effects of
shining a pure red light on your element. This capability is not limited to ambient light, but can
be used with all the light sources you generate.

The following example uses the addAmbient() method to create an Ambient light of fairly high
intensity that is greyish blue:

addAmbient(200,200,255,150)

You can also apply a Point light source to your image. Point light is a light source that can be
placed at a specified position in 3D space over your image; all the light it generates emanates
from that point outward.

Point light enables interesting effects because its intensity is highest at the point of the light
and decreases rapidly as it travels. A good way to imagine a point light source is to picture a
small lamp in a very dark room. The areas that surround the lamp are brightly lit, but objects
15 feet away aren’t illuminated very well, if at all.

Point lights are generated by the addPoint() method of the Lights Filter. The addPoint()
method takes seven arguments:

■ x—The x coordinate of the light source. The range of this coordinate is dependent upon
the size of the element.

■ y—The y coordinate of the light source. The range of this coordinate is dependent upon
the size of the element.

■ z—The z coordinate of the light source. This value corresponds to how far above the
element you want the light source to be.

■ R—The red value of the light, expressed in magnitude of saturation. The value can range
from 0 being lowest and 255 being highest.

■ G—The green value of the light, expressed in magnitude of saturation. The value can
range from 0 being lowest and 255 being highest.

■ B—The blue value of the light, expressed in magnitude of saturation. The value can
range from 0 being lowest and 255 being highest.

■ strength—The intensity of the light that is shining upon the element, expressed as an
integer from 0 to 255, with intensity increasing with the value of the integer.

The following example creates a Point light source at an x coordinate of 50 and a y coordinate
of 50 on the element, with the light appearing 25 pixels “above” the element. The light will be a
pure white light, with a fairly high intensity:

addPoint(50,50,25,255,255,255,250);

327

15

V
Part

Ch

Finally, you need to place the Lights Filter function into the startFilter() function, ready to be
pasted into the HTML code in listing 15.1 as lines 9–11. The results of running the Lights Filter
on the eagle image were shown previously in figure 15.8.

function startFilter() {
 filtEx.style.filter = “light(enabled=1)”;
 filtEx.filters.item(0).addAmbient(200,200,255,150);
 filtEx.filters.item(0).addPoint(50,50,25,255,255,255,250);
}

Motion Blur Filter
The Motion Blur Filter (see fig. 15.9) attempts to approximate what you might see if you took a
snapshot as you were moving past the element at high speed. The image you saw would not
only be blurry, but it would be blurry in a noticeable direction.

FIG. 15.9
Applying the Motion
Blur Filter to the image
of the eagle.

The Motion Blur Filter function is specified by blur() and takes four arguments:

■ direction—The direction parameter specifies the direction of the motion of the blurred
element. The default value of 0 specifies pointing straight up. The possible values are
then specified in 45 degree increments clockwise around (45,90,135,180,225,270,315)
with 90 being right, 180 being down, and 270 being left.

■ strength—The strength parameter specifies how many pixels the image will blur. The
larger this parameter, the more blurry the image.

■ add—The add parameter can be set to either 0 or 1. If it is set to 0, the image is added to
the motion-blurred image, if it is set to 1, only the motion-blurred image is shown. The
image will be more recognizable if you specify that the image should be added.

■ enabled—0 if the filter is disabled, 1 if enabled.

Motion Blur Filter

328 Chapter 15 Multimedia Filters

http://www.quecorp.com

The following example constructs a Blur Filter that blurs up and to the right, with a relatively
strong blur of 15 pixels. To see the effects of the blur clearly, you need to set the add parameter
to not add the original image:

blur(direction=45,strength=15,add=0,enabled=1)

Finally, you need to place the Motion Blur Filter function into the startFilter() function, ready
to be pasted into the HTML code in listing 15.1 as lines 9–11. The results of running the Mo-
tion Blur Filter on the eagle image were shown previously in figure 15.9.

function startFilter() {
 filtEx.style.filter = “blur(direction=45,strength=15,add=0,enabled=1)”;
}

Opacity Filter
The Opacity Filter (see fig. 15.10) enables you to set the degree of transparency for your ele-
ment. The more transparent your image is, the more ethereal it becomes, the harder it is to
see, and the less opaque it is. As it becomes fainter to the naked eye, you can place things
beneath the element and see them through it.

FIG. 15.10
Applying the Opacity
Filter to the image of the
eagle.

The Opacity Filter is specified by alpha(), which takes two arguments:

■ opacity—The degree of transparency. 0 is completely transparent, whereas 100 is
completely opaque.

■ enabled—0 if the filter is disabled, 1 if enabled.

The following code constructs an Opacity Filter that shows the element about halfway transpar-
ent:

alpha(opacity=50,enabled=1)

329

15

V
Part

Ch

Finally, you need to place the Opacity Filter function into the startFilter() function, ready to be
pasted into the HTML code in listing 15.1 as lines 9–11. The results of running the Opacity
Filter on the eagle image were shown previously in figure 15.10.

function startFilter() {
 filtEx.style.filter = “alpha(opacity=50,enabled=1)”;
}

Shadow Filter
The Shadow Filter (see fig. 15.11) renders a solid silhouette of the element along one edge of
the element. The Shadow Filter is quite similar to the Drop Shadow Filter, except instead of
rendering the shadow with an offset, it renders right from the edge and only in one direction.

FIG. 15.11
Applying the Shadow
Filter to the image of
the eagle.

The Shadow Filter is specified by shadow(), which takes three arguments:

■ color—The color of the silhouette, given in HTML RGB format.

■ direction—The direction parameter specifies the direction of the shadow that will be
rendered. The default value of 0 specifies pointing straight up. The possible values are
then specified in 45 degree increments clockwise around (45,90,135,180,225,270,315)
with 90 being right, 180 being down, and 270 being left.

■ enabled—0 if the filter is disabled, 1 if enabled.

The following example constructs a Shadow Filter that renders a magenta shadow to the lower-
right side of the element. Because the direction is given in counterclockwise degrees, you need
to specify 135 as the direction:

shadow(color=#FF0088,direction=135,enabled=1)

Shadow Filter

330 Chapter 15 Multimedia Filters

http://www.quecorp.com

Finally, you need to place the Shadow Filter function into the startFilter() function, ready to be
pasted into the HTML code in listing 15.1 as lines 9–11. The results of running the Shadow
Filter on the eagle image were shown previously in figure 15.11.

function startFilter() {
 filtEx.style.filter = “shadow(color=#FF0088,direction=135,
 enabled=1)”;
}

Wave Filter
The Wave Filter (see fig. 15.12) is one of the more interesting filters because it enables you to
warp the image as if a wave had passed through it. The best way to visualize the effects of this
filter is to imagine that you had placed a picture of the element you are filtering onto a flag,
then placed that flag in a strong breeze. The element appears as if waves were traveling
through it.

The Wave Filter is specified by wave(), which takes six arguments:

■ freq—The freq is the number of waves you want to appear in the element when the filter
is executed.

■ strength—The strength is the intensity of the waves that will be applied to the image.
The limits of the strength are dependent on the size of the element, but the range 0 to 10
tends to create interesting effects.

■ phase—The wave that travels throughout the element is a sine wave. The phase enables
you to set an offset for this sine wave. The values available are 0 to 100, with 25 being an
offset of 90 degrees.

■ lightstrength—Enables you to specify the strength of the light on the waves as a
percentage from 0 to 100.

FIG. 15.12
Applying the Wave Filter
to the image of the
eagle.

331

15

V
Part

Ch

■ add—The add parameter can be set to either 0 or 1. If it is set to 0, the image is added to
the wave filtered image, if not only the wave filtered image is shown. If you specify that
the image should be added, the image will be more recognizable.

■ enabled—0 if the filter is disabled, 1 if enabled.

The following example creates a Wave Filter that contains two waves that are fairly strong. You
will keep the wave in its normal phase and not apply any light to the wave (keeping the normal
light intensity on the element). Finally, to accentuate the wave effect, you will not use the add
parameter to add a copy of the original image to the filtered one:

wave(freq=2,strength=6,phase=0,lightstrength=0,add=0,enabled=1)

Finally, you need to place the Wave Filter function into the startFilter() function, ready to be
pasted into the HTML code in listing 15.1 as lines 9–11. The results of running the Wave Filter
on the eagle image were shown previously in figure 15.12.

function startFilter() {
 filtEx.style.filter = “wave(freq=2,strength=6,phase=0,lightstrength=0,add=0,
➥enabled=1)”;
}

Glow Filter
The Glow Filter (see fig. 15.13) renders a radiant silhouette around the outside of the element
along the right and bottom edges of the element. This radiant silhouette makes the element
appear as if it is glowing.

FIG. 15.13
Applying the Glow Filter
to the image of the
eagle.

Glow Filter

332 Chapter 15 Multimedia Filters

http://www.quecorp.com

The Glow Filter is specified by glow(), which takes three arguments:

■ color—The color of the silhouette, given in HTML RGB format.

■ strength—The strength parameter specifies the intensity of the glow that is applied.
This parameter can range from 0 (minimum glow) to 100 (maximum glow).

■ enabled—0 if the filter is disabled, 1 if enabled.

The following example constructs a Glow Filter that renders a red glow to the element at a
strength of 50 (half the maximum strength):

glow(color=#FF0000,strength=50,enabled=1)

Finally, you need to place the Glow Filter function into the startFilter() function, ready to be
pasted into the HTML code in listing 15.1 as lines 9–11. The results of running the Glow Filter
on the eagle image were shown previously in figure 15.13.

function startFilter() {
 filtEx.style.filter = “glow(color=#FF0000,strength=50,enabled=1)”;
}

Chromakey Filter
The Chromakey Filter is much like the “blue screen” effect you might have seen in documenta-
ries of the making of special effects in movies. The Chromakey effect is also used during the
TV weather reports. The weatherpersons appear to be standing in front of a weathermap, but
they are actually standing in front of a blue screen or wall that a weather map is placed onto by
the computer.

The way you achieve this effect in the Dynamic HTML color filter is by selecting a color that
will be transparent in the filter. That color will be rendered transparently throughout the entire
element and anything below pixels of that color will show through.

The Chromakey Filter is specified by the chroma(), which takes two arguments:

■ color—The color that will be made transparent in the element. Specified in the standard
HTML RGB format.

■ enabled—0 if the filter is disabled, 1 if enabled.

The following example shows a Chromakey Filter function that sets the Chromakey color to
solid red:

chroma(color=#FF0000,enabled=1)

Finally, you need to place the Chromakey Filter function into the startFilter() function, ready to
be pasted into the HTML code in listing 15.1 as lines 9–11.

function startFilter() {
 filtEx.style.filter = “chroma(color=#FF0000,enabled=1)”;
}

333

15

V
Part

Ch

The ActiveX Multimedia Objects
In addition to the Transitions and Filters available in HTML, several other multimedia controls
are available to the Dynamic HTML programmer. These multimedia controls are grouped
together into the Microsoft DirectAnimation API Controls, which is bundled with Internet
Explorer 4.0.

Unlike the Transition and Filter controls, these DirectAnimation Controls are not integrated
seamlessly into HTML as CSS properties. Instead, they are specified and controlled as generic
ActiveX objects.

The use of ActiveX objects is a little tricky, so take a while to familiarize yourself with how
ActiveX objects are used in Internet Explorer 4.0.

The tag to specify a control in Internet Explorer 4.0 is the <OBJECT> tag, and it normally takes
three properties:

■ ID—The unique identification that you want to give to the controls so it can be refer-
enced from other HTML elements. This ID works in the same manner as the ID
property in other elements.

■ CLASSID—The CLASS ID property is the way in which you select the control being
used. This is really the Achilles heel of using ActiveX Controls, because these identifiers
can be quite complicated and hard to remember. An example of a Class ID is
“CLDID:37992B41-F5E3-11CF-97DF-00A0C90FEE5”.

■ PARAM—The PARAM property is how properties are passed to the ActiveX Control.
The name of the property is passed as the “NAME” attribute of the <PARAM> tag and
the value that you want to use is passed as the “VALUE” property. So, if you wanted to
pass the value 3 to the Tick property, you would use the following PARAM—<PARAM
NAME=Tick VALUE=3>.

Although using ActiveX objects can be a bit confusing and complicated at times, they can be
quite powerful. An added advantage is that the DirectAnimation API is built into Internet Ex-
plorer 4.0 so you can depend on its controls being available.

The DirectAnimation ActiveX Controls that ship with Internet Explorer 4.0 include the follow-
ing:

■ Path Control—Animates an element over a path.

■ Structured Graphics Control—Provides an environment that enables the construction
of relatively sophisticated line-art objects.

■ Sequencer Control—Enables a list of actions to be performed on your HTML docu-
ment over a period of time.

■ Sprite Control—Animates an image according to the instructions you specify based
upon the frames contained within the image.

Discussing the DirectAnimation Controls in detail is beyond the scope of this book, but if you
plan on doing high-end multimedia development they may be worth investigating. Detailed

The ActiveX Multimedia Objects

334 Chapter 15 Multimedia Filters

http://www.quecorp.com

information on the DirectAnimation Controls is available on the Microsoft Web Site at:
http://www.microsoft.com/msdn/sdk/inetsdk/help/dxmedia/jaxa/default.htm.

From Here…
This chapter ends the discussion on the marriage of multimedia effects and Dynamic HTML.
Although these advanced topics can be hard to grasp at first, they’re definitely worth learning
in detail because they can add a great deal to your Dynamic HTML programs.

The next part of the book will discuss applying the technologies you’ve learned over the course
of this book in real-world situations. The process from design to implementation will be cov-
ered in detail.

■ Chapter 16, “Pin the Tail on the Donkey”—Covers the construction of a simple game in a
step-by-step manner. This game will use basic event handling, element positioning, and
collision detection.

■ Chapter 17, “Basketball Explained”—Takes a look at an interactive tutorial that explains
some of basketball’s finer points.

■ Chapter 18, “Building an Online Catalog”—Takes a look at how Dynamic HTML can be
used to create an online catalog with a variety of functionality.

■ Chapter 19, “Building the Smashout Video Game”—Creates a fully functional version of a
“breakout” style game, complete with collision detection, showcasing the power of
Dynamic HTML.

VIP A R T

Real World Dynamic HTML

16 Pin the Tail on the Donkey 337

17 Basketball Explained 355

18 Building an Online Catalog 377

19 Building the Smashout Video Game 401

337

16

VI
Part

Ch

T

16C H A P T E R

Layout

Apply positioning and layering to
create a game board for play.

User Interfaces

Apply positioning and moving ele-
ments to create a game interface.

Counters

Learn how to create a counting
mechanism to keep track of game
events.

Detecting Element Location

Use positioning and scripting to
detect the element positioning in an
online game created with Dynamic
HTML.

Pin the Tail on the
Donkey

his section of the book presents you with a number of
real world implementations of Dynamic HTML. These
examples are designed to show you how the Dynamic
HTML topics that you’ve learned about can be used to
create new and exciting interfaces and applications for
your web-based content.

This chapter begins by showing you how to design a
lighthearted game of “Pin the Tail on the Donkey.” The
game shows how you can use Dynamic HTML to create
an interface and to script functionality.

Without further delay, immerse yourself in building some
actual applications that take advantage of Dynamic
HTML’s capabilities. ■

338 Chapter 16 Pin the Tail on the Donkey

http://www.quecorp.com

Understanding the Game
In this chapter, you will develop a Dynamic HTML version of the classic children’s game, “Pin
the Tail on the Donkey,” where a poor, hapless donkey has misplaced his tail. The goal of the
game is to pin the tail back into the proper place on the donkey’s rear. Of course, just grabbing
a tail and sticking it on would be far too easy. So in the traditional game, the player is impaired
through the use of a blindfold that prevents him from seeing where the donkey is while he is
trying to pin on the tail. The usual process consists of a try or two, and then the player is out of
the game.

The electronic version of the game also has a donkey who has lost his tail. The player is given
three tails (three chances) to pin the tail back on the donkey, restoring the donkey’s faith in
humanity. Should the player fail, she is electronically admonished for her failure in animal care.
Of course, to ask the player to blindfold herself before taking her turn might be a bit much, so
instead, you will need to develop some electronic blindfolding mechanism. Besides, making
the blindfolding automatic will remove any temptation to cheat. But you would never cheat,
would you?

Now take a look at how you are going to lay out the game board, and then you will learn how to
script the actual game play.

Laying Out the Game
The structure of the game is straightforward. You are basically going to construct a gameboard
that will contain all the elements for the little game, and then position each element individually.
The elements that you will need for your game include the following:

■ A title

■ The donkey

■ Some rules

■ A Tries counter

■ A Reset button

■ The tails

Now you need to lay out these elements. The following sections demonstrate how to do this.

Structuring the Document
The first step in creating the game is to establish a gameboard or a playing area. To accomplish
this, you need to use the structure of the HTML document, and then create a single <DIV> tag
that will serve as the gameboard, and also act as a positioning container for the other elements
on the page.

Listing 16.1 shows the game’s basic document structure, and the <DIV> tag that is used to
define the game area.

339

16

VI
Part

Ch

Listing 16.1 Structuring the Gameboard and Document

01. <HTML>
02. <HEAD>
03. <TITLE>Pin the Tail on the Donkey</TITLE>
04. </HEAD>
05. <BODY>
06.
07. <EMBED STYLE=”display: none” autostart=”TRUE” loop=”FALSE” SRC=”donkey.wav”>
08.
09. <DIV id=”GameBoard” STYLE=”position: absolute; top: 10; left: 10; width:
➥550; height: 400; border: solid; border-color: red; background: black; z-
➥index: –1;”>
10. </DIV>
11.
12. </BODY>
13. </HTML>

Within this listing, you might also notice another special tag that creates the “haw-haw” donkey
sound that is played when the game is first loaded in line 7. The <EMBED> tag invokes the
Microsoft ActiveMovie player, but hides the actual sound element from the player’s screen.
With the board in place, you are ready to start adding game elements.

Positioning Static Elements
You may recall the discussions of layout in Chapter 9, “Layout and Positioning.” Here you are
going to put the principles discussed in that chapter into a practical, well, at least fun applica-
tion. The first step in laying out the game is to position the elements that will be stationary and
not subject to any interactivity. In this case, these elements are as follows:

■ The donkey

■ The rules

■ The game title

Laying out these elements is simply a matter of defining an object for each element, using the
 tag, and then positioning the element by using absolute positioning. The results of this
exercise are shown in listing 16.2.

Listing 16.2 Positioning Static Elements such as the Title, Donkey,
and Rules

01. <SPAN id=”GameTitle” STYLE=”position: absolute; top: 25; left: 25;
➥color: red; font-family: sans-serif”>
02. <H1>Pin the Tail on the Donkey!</H1>
03.
04.
05.
06.
07.
08.

Laying Out the Game

continues

340 Chapter 16 Pin the Tail on the Donkey

http://www.quecorp.com

09. <SPAN id=”Rules” STYLE=”position: absolute; top: 100; left: 300;
➥width: 200; color: red; font-family: sans-serif; visibility: visible”>
10. Click on a tail to begin the game. When you click on a tail,
11.the screen will go black. Do your best to move the tail over
12.the Donkey’s rear and restore his tail to its natural state!
13. <P>
14. Click on any tail to begin the game!
15.

In this listing, you can see that each of the elements is firmly rooted on the page, and if you
contain these elements within the gameboard defined in line 1, you will never need to tinker
with them again. Figure 16.1 shows these elements in their final resting place, and the game is
beginning to take the form of a playable version of the classic children’s game.

FIG. 16.1
The gameboard with
static elements in place.

Positioning Dynamic Elements
Now that you have locked the static elements into position, it is time to add two of the elements
that will receive user input. Later, these elements will be manipulated by the scripts that will
give the game functionality. These two elements are as follows:

■ The Tries counter

■ The Reset button

Each of these elements serves an important function in the game. The Tries counter remains
visible even when the player is blindfolded, so that the player is always aware of how many
chances he has left to help out the poor donkey.

Listing 16.2 Continued

341

16

VI
Part

Ch

The Reset button also remains visible during the course of the game play, because after all, a
frustrated user should always be allowed a chance to start over. Listing 16.3 shows how to code
these two elements on the page.

Listing 16.3 Positioning Dynamic Content: the Counter, Blindfold, and
Reset Button

01. <DIV id=”Counter” STYLE=”position: absolute; top: 325; left: 325;
➥color: red; font-family: sans-serif; z-index: 1">
02. <H2>Tries = 3</H2>
03. </DIV>
04.
05. <IMG id=”Blindfold” STYLE=”position: absolute; top: 25; left: 15;
➥display: none” SRC=”blindfold.gif”>
06.
07. <INPUT TYPE=BUTTON VALUE=”Reset Game” STYLE=”position: absolute;
➥top: 360; left: 330; z-index: 1" onclick=”reset();”>

As you can see, these elements are positioned in the same manner as the other elements—
using CSS Positioning. You also have added a z-index property value for the elements to ensure
that they stay on top no matter what happens during the game play. By doing this, you enable
the player to always know his status, and he can always leave the game. You might also notice
that you have added an element called “Blindfold” in line 5, which has been set to display
“none.” This element acts as the method for blindfolding the player during play. Basically, it is a
large solid black area that will be placed over the gameboard, obscuring the donkey from the
player’s view. The tail elements will remain visible above the blindfold, as will the Reset button
and the Tries counter. The user will then be able to drag and drop the tails to where he be-
lieves is the proper place. By using z-indexes and positioning, it is possible to make sure that
the elements that need to remain visible do so to protect the functionality of the game. Figure
16.2 shows what the game looks like with the new dynamic elements added.

FIG. 16.2
The gameboard with
dynamic elements
added.

Laying Out the Game

342 Chapter 16 Pin the Tail on the Donkey

http://www.quecorp.com

Positioning the Tails
Now you only have one set of dynamic elements left—the tails—to position on the gameboard
before you are ready to start scripting the functionality of the game.

You will position the donkey tails exactly as you did the other elements, with CSS Positioning
and z-indexing to make sure that they remain visible during game play. The code in listing 16.4
shows how you will position the tails.

Listing 16.4 Positioning the Tails

01. <IMG id=”tail1" STYLE=”position: relative; top: 275; left: 50;
➥visibility: visible; z-index: 1" onmousemove=”MoveTail();” onclick=”count();
➥” SRC=”thetail.gif”>
02.
03. <IMG id=”tail2" STYLE=”position: relative; top: 275; left: 100;
➥visibility: visible; z-index: 1" onmousemove=”MoveTail();” onclick=”count();
➥” SRC=”thetail.gif”>
04.
05. <IMG id=”tail3" STYLE=”position: relative; top: 275; left: 150;
➥visibility: visible; z-index: 1" onmousemove=”MoveTail();”
➥onclick=”count();” SRC=”thetail.gif”>

Up to this point, however, only the Reset button has dealt with event handling based on user
interaction. Because the tails need to be able to move when clicked and dropped into position,
they will need to have some events bound to them. In this case, two events are actually related
to the tails, as shown in listing 16.4 on lines 1, 3, and 5:

onmousemove=”MoveTail();” onclick=”count();”

This code simply binds the MoveTail() function to the tail during the onmousemove event. So
whenever the button is pressed on the tail, and the mouse is moving, the MoveTail() function
will perform the work. This is also a good place to put in an event to decrement the Tries
counter because each time you click a tail and move it, you are using a turn. By linking the
count() function, which tracks the number of tries, to the mouse click, you can be sure that
when a player clicks a tail to move it, he is using one of his turns. That’s how to lay out the
game! The final layout, complete with tails, is shown in figure 16.3.

343

16

VI
Part

Ch

Scripting Functionality
Now that you have completely laid out the gameboard, and all the elements that you are going
to need for game play are in place, you are ready to start writing the script and functions that
are needed to play the game. Table 16.1 lists the different elements of functionality you need in
the game and the functions needed to implement them.

Table 16.1 Required Elements for Pin the Tail on the Donkey

Functionality Needed Function to Implement

The capability to drag and drop the donkey tails. MoveTail()

A mechanism for detecting when the tail detect()
is pinned correctly.

A mechanism for keeping track of the number count()
of turns a player takes.

A means of electronically blindfold()
blindfolding the player.

A way to remove the blindfold. seeagain()

A message of sorrow for game losers. sorry()

A message of congratulations for game winners. winner()

A way to reset the game for the next player. reset()

FIG. 16.3
The complete Pin the
Tail on the Donkey
layout is shown.

Scripting Functionality

344 Chapter 16 Pin the Tail on the Donkey

http://www.quecorp.com

MoveTail()
The first function that you need to create is the MoveTail() function. This function creates the
means by which the donkey tails can be dragged and dropped on the gameboard.

To do this, you need to make use of the animation code that you wrote to move images in Chap-
ter 13 (listing 13.4), “Introducing Multimedia.” Listing 16.5 shows the code that accomplishes
the motion.

Listing 16.5 Creating the Function to Drag and Drop the Tails

01. function MoveTail() {
02. if (window.event.button == 1) {
03. blindfold();
04. var srcElement, newtop, newleft;
05. srcElement = window.event.srcElement;
06. newleft=window.event.x - (srcElement.width/2);
07. newtop=window.event.y - (srcElement.height/2);
08. srcElement.style.posTop = newtop;
09. srcElement.style.posLeft = newleft;
10. window.event.returnValue = false;
11. window.event.cancelBubble = true;
12. }
13. }

Basically, the MoveTail() function uses an if statement to make sure that the mouse button is
pressed while you are moving the item. Then, the srcElement object property retrieves the X
and the Y position coordinates for the tail. Finally, you calculate new values for the top and left
positions based on the current location of the mouse, and then reassign those values to the tail,
so that the tail moves with the mouse.

The end result is a tail that can be clicked, and while the mouse button is depressed, dragged
anywhere on the gameboard.

detect()
The next function that you need to construct is the detect() function. When the player places a
tail on the gameboard at a location he believes is where the tail properly belongs, there needs
to be some way for the game to check to see whether the player is correct. The detect() func-
tion accomplishes this as shown in listing 16.6.

Listing 16.6 The detect() Function that Determines Whether the Tail is on
the Donkey

01. function detect() {
02. var tail1x = tail1.style.posTop;
03. var tail1y = tail1.style.posLeft;
04. var tail2x = tail2.style.posTop;
05. var tail2y = tail2.style.posLeft;
06. var tail3x = tail3.style.posTop;

345

16

VI
Part

Ch

07. var tail3y = tail3.style.posLeft;
08.
09. if ((tail1x > 135) && (tail1x < 155) && (tail1y > 235) &&
➥(tail1y < 260))
10. winner();
11. if ((tail2x > 135) && (tail2x < 155) && (tail2y > 210) &&
➥(tail2y < 235))
12. winner();
13. if ((tail3x > 135) && (tail3x < 155) && (tail3y > 190) &&
➥(tail3y < 215))
14. winner();
15. if (tries == 0)
16. sorry();
17. }

The detect() function first defines the variables that you are going to use to keep track of the
location of each tail element—one, two, and three. Because each of the tail elements can be
placed independently, they need to be monitored independently.

After you define the variables, and obtain their values from each of the tail objects, the next
step is to see whether they are in the proper range to be on the donkey where they belong. You
accomplish this with a series of if statements that look to see whether the X and Y coordinates
of the tail fall between an acceptable range of coordinates on the donkey’s behind. If, in fact,
the tail is placed correctly, then the detect() function declares the player a winner, and the
gameplay halts. If the value is not a winning value, however, then the function does nothing,
and play continues until the player is out of turns.

count()
Because you are limiting players to only three chances to correctly pin the tail on the donkey,
you need some mechanism for creating a counter to keep track of each player’s turn. The code
in listing 16.7 shows the count() function that is used for this purpose.

Listing 16.7 The count() Function Keeps Track of the Number of Tries

01. function count() {
02. tries—;
03. if (tries == 2) {
04. Counter.innerHTML = “<H2>Tries = 2</H2>”;
05. detect();
06. }
07. if (tries == 1) {
08. Counter.innerHTML = “<H2>Tries = 1</H2>”;
09. detect();
10. }
11. if (tries == 0) {
12. seeagain();
13. Counter.innerHTML = “<H2>Tries = 0</H2>”;
14. detect();
15. }
16. }

Scripting Functionality

346 Chapter 16 Pin the Tail on the Donkey

http://www.quecorp.com

The count() function itself is quite simple. It uses the “tries” variable (which is initially set to 3)
to keep track of the player’s turns. Each time the user clicks a tail, the count() function is called
and it subtracts a turn from the “tries” variable. The function then checks to see what turn it is,
and alters the text for the Tries counter accordingly, by using the innerHTML object to manipu-
late the HTML on the page.

The result is a counter that not only keeps track of the turns a user has taken, but also updates
the user of remaining attempts as the game progresses.

blindfold()
As mentioned previously, this version of Pin the Tail on the Donkey would not be a very effec-
tive “cyber” game if you asked the player to put on a blindfold before each turn. So instead, you
need to create an electronic blindfold that is placed “on” the user when he first selects a tail to
initiate game play. Listing 16.8 shows the simple function that changes the value of the display
property on the blindfold object, causing it to be displayed.

Listing 16.8 The blindfoldFunction

01. function blindfold() {
02. Blindfold.style.display = “”;
03. }

The result of calling this function is a “virtual” blindfold that allows the player to try to pin the
tail on the donkey without being able to see the actual donkey image, as shown in figure 16.4.

FIG. 16.4
The game in action, with
the blindfold applied.

seeagain()
Of course, even though you want the user blindfolded for the game play, you don’t want them
in the dark forever. Listing 16.9 shows the seeagain() function that removes the electronic
blindfold, for example, if the player wins or loses, or if the game is reset.

347

16

VI
Part

Ch

Listing 16.9 The seeagain Function “Takes Off” the Blindfold

01. function seeagain() {
02. Blindfold.style.display = “none”;
03. }

sorry()
Of course, not everyone can be a winner. There will be times when even the most experienced
veterinarian won’t be able to properly pin the tail on the donkey. For those sad occasions, it is
necessary to have a message of consolation, to lift the spirits of the broken player, and to let
him know that he lost. Listing 16.10 shows the function that calls an alert() function to notify
the player that he needs to start over.

Listing 16.10 The Function to Display a Message for Those Not Fortunate
Enough to Win

01. function sorry() {
02. alert(“Sorry! Better Luck Next Time!”);
03. }

The result of failing to pin on the tail is a message wishing you luck for next time, as shown in
figure 16.5

FIG. 16.5
The sorry() function
notifies players of
disappointing results.

Scripting Functionality

348 Chapter 16 Pin the Tail on the Donkey

http://www.quecorp.com

winner()
Because the game is not rocket science, most players will find some level of mastery with the
game quite quickly. In these cases, you need to supply a function that will congratulate the
player on his victory, as shown in listing 16.11.

Listing 16.11 The winner() Function, to Congratulate Victory

01. function winner() {
02. seeagain();
03. Donkey.innerHTML = “”;
04. tail1.style.visibility = “hidden”;
05. tail2.style.visibility = “hidden”;
06. tail3.style.visibility = “hidden”;
07. alert(“You Win!!”);
08. }

You will notice though that the winner() function does a little more than prompt the user with a
congratulatory alert message. In addition to the congrats, the function hides the tails, because
one has been correctly attached. The image of the poor donkey without his tail is also replaced
with the image of the donkey that has his tail properly attached. Then, and only then is the
alert message displayed for a job well done, as shown in figure 16.6.

FIG. 16.6
The winner() function
congratulates winners.

reset()
Now that you have the bulk of the functions written to provide functionality to the game, you
still need a function to reset the game to its original state. This Reset button could be used by a

349

16

VI
Part

Ch

player who has become frustrated with the game, or by a player who has finished his game and
wants to reset the game for another player.

Listing 16.12 shows the reset() function, which changes all the values for the original elements
back to their default values.

Listing 16.12 The reset() Function, to Play Again

01. function reset() {
02.
03. tries = 3;
04. seeagain();
05. tail1.style.posTop = 275;
06. tail1.style.posLeft = 50;
07. tail1.style.visibility = “visible”;
08. tail2.style.posTop = 275;
09. tail2.style.posLeft = 100;
10. tail2.style.visibility = “visible”;
11. tail3.style.posTop = 275;
12. tail3.style.posLeft = 150;
13. tail3.style.visibility = “visible”;
14. Counter.innerHTML = “<H2>Tries = 3</H2>”;
15. Donkey.innerHTML = “”;
16. }

First, the function resets the number of tries the player has to 3 (line 3), and then removes any
blindfold that might be on (line 4). Next, the tails are each returned to their original positions
and original visibility states (lines 5–13), so the game is ready for a new player to click and
begin play. Finally, the on-screen Tries counter is reset so the player knows his current turn
(line 14), and then the tail is ripped off the poor donkey (line 15). Voilà! The game is ready to
play again.

The Final Page!
By combining all the functions and element layout into one file, you are ready to create the fully
functional version of the Pin the Tail on the Donkey game. Listing 16.13 shows the final code
for the game in its entirety.

Listing 16.13 The Complete Code for Pin the Tail on the Donkey

001. <HTML>
002. <HEAD>
003. <TITLE>Pin the Tail on the Donkey</TITLE>
004.
005. <SCRIPT LANGUAGE=”JavaScript”>
006. var tries = 3;
007.
008. function MoveTail() {
009. if (window.event.button == 1) {

The Final Page!

continues

350 Chapter 16 Pin the Tail on the Donkey

http://www.quecorp.com

010. blindfold();
011. var srcElement, newtop, newleft;
012. srcElement = window.event.srcElement;
013. newleft=window.event.x - (srcElement.width/2);
014. newtop=window.event.y - (srcElement.height/2);
015. srcElement.style.posTop = newtop;
016. srcElement.style.posLeft = newleft;
017. window.event.returnValue = false;
018. window.event.cancelBubble = true;
019. }
020. }
021.
022. function detect() {
023. var tail1x = tail1.style.posTop;
024. var tail1y = tail1.style.posLeft;
025. var tail2x = tail2.style.posTop;
026. var tail2y = tail2.style.posLeft;
027. var tail3x = tail3.style.posTop;
028. var tail3y = tail3.style.posLeft;
029.
030. if ((tail1x > 135) && (tail1x < 155)
031. && (tail1y > 235) && (tail1y < 260))
032. winner();
033. if ((tail2x > 135) && (tail2x < 155)
034. && (tail2y > 210) && (tail2y < 235))
035. winner();
036. if ((tail3x > 135) && (tail3x < 155)
037. && (tail3y > 190) && (tail3y < 215))
038. winner();
039. if (tries == 0)
040. sorry();
041. }
042.
043. function count() {
044. tries—;
045. if (tries == 2) {
046. Counter.innerHTML = “<H2>Tries = 2</H2>”;
047. detect();
048. }
049. if (tries == 1) {
050. Counter.innerHTML = “<H2>Tries = 1</H2>”;
051. detect();
052. }
053. if (tries == 0) {
054. seeagain();
055. Counter.innerHTML = “<H2>Tries = 0</H2>”;
056. detect();
057. }
058. }
059.
060. function blindfold() {
061. Blindfold.style.display = “”;
062. }
063.

Listing 16.13 Continued

351

16

VI
Part

Ch

064. function seeagain() {
065. Blindfold.style.display = “none”;
066.
067. }
068.
069. function sorry() {
070. alert(“Sorry! Better Luck Next Time!”);
071. }
072.
073. function winner() {
074. seeagain();
075. Donkey.innerHTML = “”;
076. tail1.style.visibility = “hidden”;
077. tail2.style.visibility = “hidden”;
078. tail3.style.visibility = “hidden”;
079. alert(“You Win!!”);
080. }
081.
082. function reset() {
083.
084. tries = 3;
085. seeagain();
086. tail1.style.posTop = 275;
087. tail1.style.posLeft = 50;
088. tail1.style.visibility = “visible”;
089. tail2.style.posTop = 275;
090. tail2.style.posLeft = 100;
091. tail2.style.visibility = “visible”;
092. tail3.style.posTop = 275;
093. tail3.style.posLeft = 150;
094. tail3.style.visibility = “visible”;
095. Counter.innerHTML = “<H2>Tries = 3</H2>”;
096. Donkey.innerHTML = “”;
097. }
098.
099. </SCRIPT>
100. </HEAD>
101. <BODY>
102.
103. <EMBED STYLE=”display: none” autostart=”TRUE” loop=”FALSE”
➥SRC=”donkey.wav”>
104.
105. <DIV id=”GameBoard” STYLE=”position: absolute; top: 10; left:10;
➥width: 550; height: 400; border: solid; border-color: red;
➥background: black; z-index: -1;”>
106.
107. <SPAN id=”GameTitle” STYLE=”position: absolute; top: 25; left: 25;
➥color: red; font-family: sans-serif”>
108. <H1>Pin the Tail on the Donkey!</H1>
109.
110.
111.
112.
113.
114.

The Final Page!

continues

352 Chapter 16 Pin the Tail on the Donkey

http://www.quecorp.com

115. <SPAN id=”Rules” STYLE=”position: absolute; top: 100; left: 300;
➥width: 200; color: red; font-family: sans-serif; visibility: visible”>
116. Click on a tail to begin the game. When you click on a tail,
117. the screen will go black. Do your best to move the tail over
118. the Donkey’s rear and restore his tail to its natural state!
119. <P>
120. Click on any tail to begin the game!
121.
122.
123. <DIV id=”Counter” STYLE=”position: absolute; top: 325; left: 325;
➥color: red; font-family: sans-serif; z-index: 1">
124. <H2>Tries = 3</H2>
125. </DIV>
126.
127. <IMG id=”Blindfold” STYLE=”position: absolute; top: 25; left: 15;
➥display: none” SRC=”blindfold.gif”>
128.
129. <INPUT TYPE=BUTTON VALUE=”Reset Game” STYLE=”position: absolute; top: 360;
➥left: 330; z-index: 1" onclick=”reset();”>
130.
131. </DIV>
132.
133. <IMG id=”tail1" STYLE=”position: relative; top: 275; left: 50;
➥visibility: visible; z-index: 1" onmousemove=”MoveTail();
➥” onclick=”count();” SRC=”thetail.gif”>
134.
135. <IMG id=”tail2" STYLE=”position: relative; top: 275; left: 100;
➥visibility: visible; z-index: 1" onmousemove=”MoveTail();
➥” onclick=”count();” SRC=”thetail.gif”>
136.
137. <IMG id=”tail3" STYLE=”position: relative; top: 275; left: 150;
➥visibility: visible; z-index: 1" onmousemove=”MoveTail();
➥” onclick=”count();” SRC=”thetail.gif”>
138.
139. </BODY>
140. </HTML>

With all the elements in place, the game is self-contained as an HTML file, yet provides a level
of user interactivity that would not be possible with traditional HTML. Figure 16.7 shows the
game after being played.

Listing 16.13 Continued

353

16

VI
Part

Ch

From Here…
Although it might not seem like a powerful application, Pin the Tail on the Donkey showcases
some interface techniques that could be used to build much more advanced Dynamic HTML
applications based on the same underlying principles. Instead of pinning the tail on our poor
pal, for example, you could have been asked to simulate the repair of a nuclear reactor, with the
“game” keeping track of the placement and order of the repairs you made. You could then
check the work for safety without ever endangering the lives of anyone. Many users are also
familiar with “virtual” dissections online for biology students. This type of application could
easily be revised to incorporate Dynamic HTML to make the experience more interactive,
more fun, and all around a better learning experience for students.

Now that you have seen how Dynamic HTML can function in a real life application, it’s time to
move on to look at some other examples.

■ Chapter 17, “Basketball Explained,” takes a look at an interactive tutorial that explains
some of basketball’s finer points.

■ Chapter 18, “Building an Online Catalog,” takes a look at how Dynamic HTML can be
used to create an online catalog with a variety of functionality.

■ Chapter 19, “Building the Smashout Video Game,” caps it all off by creating a fully
functional version of a “breakout” style game, complete with collision detection, show-
casing the power of Dynamic HTML.

FIG. 16.7
The final game after a
rousing round of Pin the
Tail on the Donkey.

From Here…

354 Chapter 16 Pin the Tail on the Donkey

http://www.quecorp.com

355

17

VI
Part

Ch

T

17C H A P T E R

Positioning Elements

Apply CSS Positioning and Dynamic
HTML to create an interactive
demonstration.

Controlling Visibility

Use layers and visibility to create
graphic explanations.

Building a User Interface

Construct an intuitive user interface
for a tutorial/demonstration.here are many different applications for Dynamic HTML

pages. Throughout the text you have been provided some
smaller applications and ideas of how Dynamic HTML can
be used. Now, take a look at how the technology might be
used to create a tutorial and demonstration application
that could be used as a sales tool or an educational tool.

One of the most frequent business activities is providing
demonstrations. In fact, demonstrations are something we
are familiar with from the earliest schooling. Learning is
often achieved through some sort of presentation, and the
more interesting, fun, and interactive a presentation is, the
more the viewer is likely to take away from it.

This chapter puts Dynamic HTML to work in building a
simple interactive explanation of basketball.

Basketball Explained

356 Chapter 17 Basketball Explained

http://www.quecorp.com

CAUTION

This demo is designed to showcase Dynamic HTML, and users who employ it to learn more about basketball
do so at their own peril. Especially in any Big 10 state.

In this demo, you are going to create a simplified diagram of a basketball court with the correct
markings, and then some images of various calls that a referee would make during a typical
game. The user will then be able to pick and choose various elements, such as a three-point
line, or a traveling call, to get an explanation of what the court marking or call means. Of
course, the same type of instruction could be given in a static HTML format. The information
would be the same, but the interaction with the user would not be as engaging, or as efficient.
So now, take a look at how you can create a basketball tutorial. ■

Creating the Images
Although you might not think immediately of creating the images for your presentation when
considering Dynamic HTML, it is an important part of designing the final product. In fact, in
this example, you are going to need several images, and they will need to work together in
layers, so it is only by carefully laying out and constructing the images that you will be able to
make sure that they work together.

Creating the basketball court, for example, requires the following images:

■ The court

■ Half-court line

■ Three-point line

■ Top of the key

■ The lane

■ The basket

Each of these images needs to be in the same shape, with the exact same dimensions, so when
layered, the elements actually line up as they would on a basketball court. As you can see in
figure 17.1, these elements were first created in Photoshop, keeping the dimensions of each
GIF at 432×288 pixels, so each element lines up correctly.

Next, you need to create the icons used to represent the various calls the referee might make
during the course of the game. Although these images are not going to overlap, their size is
also still important from an interface perspective. As you display several referee icons for the
viewer to choose from, you will want to do so in a manner that allows easy access, while still
providing a consistent layout. To do this, you again need images that have the same dimen-
sions. Figure 17.2 shows how each of the referee images has been edited for consistency, keep-
ing each icon at 120×105 pixels.

357

17

VI
Part

Ch

FIG. 17.1
Laying out the three-
point line for the
tutorial.

FIG. 17.2
Creating consistent
icons for the referee
interface.

Of course, before you can begin editing the images, you must have a rough idea of what the
layout is going to look like. For this example, you want to start with the basketball court as the
main element on the page, and build from there. This will help you to decide on relative size,
and to determine how things will fit together.

Laying Out the Page
The first order of business in creating the tutorial is to layout the court elements. This is a
pretty straightforward process, but there are a couple of things that you want to watch closely.

First, you need to create the layout of the court, and then add the layout for the icons next to
that. The following sections show you how to accomplish this series of tasks.

Laying Out the Page

358 Chapter 17 Basketball Explained

http://www.quecorp.com

Positioning the Initial Layout
The initial court layout is pretty straightforward. First, you need to employ absolute positioning
to make sure that each of the court elements is in exactly the same position. If you leave it at
this, however, you might not be able to see all the elements correctly.

To ensure that each of the elements functions correctly, you need to use z-indexing to place
each element on its own layer, as shown in the following line of code:

<IMG id=”Court” STYLE=”position: absolute; top: 25px; left: 25; z-index: 0;
➥visibility: visible;” SRC=”court.gif”>

That’s all there is to it. Listing 17.1 shows the code that creates the court layout, and figure 17.3
shows the court itself.

Listing 17.1 Laying Out the Basketball Court

01. <IMG id=”Court” STYLE=”position: absolute; top: 25px; left: 25; z-index: 0;
➥visibility: visible;” SRC=”court.gif”>
02. <IMG id=”XPoint” STYLE=”position: absolute; top: 25px; left: 25; z-index: 1;
➥visibility: visible;” SRC=”3point.gif”>
03. <IMG id=”HalfCourt” STYLE=”position: absolute; top: 25px; left: 25;
➥z-index: 2; visibility: visible;” SRC=”halfcourt.gif”>
04. <IMG id=”Key” STYLE=”position: absolute; top: 25px; left: 25; z-index: 3;
➥visibility: visible;” SRC=”key.gif”>
05. <IMG id=”Lane” STYLE=”position: absolute; top: 25px; left: 25; z-index: 4;
➥visibility: visible;” SRC=”lane.gif”>
06. <IMG id=”Basket” STYLE=”position: absolute; top: 25px; left: 25; z-index: 5;
➥visibility: visible;” SRC=”basket.gif”>
07. <IMG id=”Screen” STYLE=”position: absolute; top: 25px; left: 25; z-index: 0;
➥visibility: hidden;” SRC=”court-screen.gif”>
08.
09. <DIV id=”Title” STYLE=”position: absolute; top: 325; left: 50;
➥font-family: sans-serif; color: orange; visibility: visible;”>
10. <H1>A Basketball Tutorial</H1>
11. </DIV>

In this code, lines 1–7 each specify the location of a different element, such as the basket or the
lane. Lines 9–11 specify the location of the tutorial’s title. These are straightforward uses of the
 and <DIV> tags, but they will come into play later when you will hide and show these
elements based on their visibility property values.

Creating the Scroll Box
With the court layout complete, you can move on to laying out the scroll box that contains the
images of the referee and icons for the court elements. Later in the “Scripting the Functional-
ity” section, you will add functionality that enables users to click an icon in this box to get an
explanation of the call or court marking. For now, just format the icons.

359

17

VI
Part

Ch

Because a number of icons are going to appear together, and you don’t want to display them all
on the screen at once, you need to create a scroll box to contain the icons. Users can then
scroll through the icons, and click an icon to receive a detailed explanation.

Creating the scroll box exploits the <DIV> tag and OVERFLOW attribute. First, you will use
the <DIV> tag to create an overall container element that will enclose all the icon images. If you
recall from Chapter 9, “Layout and Positioning,” with CSS Positioning, you can nest <DIV>
tags, which enables you to treat each image as a separate element, all nested into a larger ele-
ment called “Official” in this example, because it holds the referee icons:

<DIV id=”Official” STYLE=”position: absolute; top: 25; left: 475; height: 340;
➥width: 145; overflow: scroll”>
</DIV>

Of course, all the icons will not fit in this 340×145 container; however, if you recall from Chap-
ter 8, “Dynamic Styles,” you can specify how container objects handle too much data using the
overflow property. By setting the value of this property to “scroll” you can automatically create
a scrolling home for the icons!

The only thing that remains is to format the icons themselves:

<IMG id=”Ref1" STYLE=”border: none; border-width: thin; border-color: orange;
➥” onclick=”showObject(); highlight()”; ondblclick=”reset()”;
➥SRC=”jumpball.gif”>

You begin by naming each of the icons with a unique ID. This is important for keeping track of
each of the images later. Next, you specify the STYLE elements for the icons, in this case some
border information. Later, when users click the icon, you will want to highlight the icon with a
border, so that you include the border information now and simply set the border to “none.”

FIG. 17.3
The finished basketball
court layout.

Laying Out the Page

360 Chapter 17 Basketball Explained

http://www.quecorp.com

The result is that the border is not currently displayed, but the elements are in place to high-
light the icon in the future.

You will also notice a couple of event handling items here. onclick=“showObject(); high-
light():” and ondblclick=“reset()” are some functions that you will create in “Scripting the
Functionality” section later to handle what happens when a user clicks an icon, and what hap-
pens when they double-click. When the user clicks an icon, you want to use the showObject()
function to reveal the icon explanation, and the highlight() function to highlight the icon. When
the user double-clicks, you want to reset the icon and court. Listing 17.2 shows what the layout
of the icon scroll box looks like, and figure 17.4 shows the final layout of the icon scroll box.

Listing 17.2 Laying Out the Basketball Court

01. <DIV id=”Official” STYLE=”position: absolute; top: 25; left: 475;
➥height: 340; width: 145; overflow: scroll”>
02. <IMG id=”Ref1" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”jumpball.gif”>
03. <IMG id=”Ref2" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”3sec.gif”>
04. <IMG id=”Ref3" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”travel.gif”>
05. <IMG id=”Ref4" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”foul.gif”>
06. <IMG id=”Ref5" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”one-in-one.gif”>
07. <IMG id=”Ref6" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”timeout.gif”>
08.
09. <IMG id=”Court1" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”basket-small.gif”>
10. <IMG id=”Court2" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”halfcourt-small.gif”>
11. <IMG id=”Court3" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”key-small.gif”>
12. <IMG id=”Court4" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”lane-small.gif”>
13. <IMG id=”Court5" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”3point-small.gif”>
14. </DIV>

361

17

VI
Part

Ch

FIG. 17.4
The finished icon
selection box.

Combining the code from listings 17.1 and 17.2 results in the completion of the layout for this
tutorial. The end result is the finished interface, ready to be scripted, as shown in figure 17.5.

FIG. 17.5
The final layout of the
basketball tutorial.

Laying Out the Page

Formatting the Explanations
Now that the court and icons are laid out, you need to layout one final element: the explana-
tions for the court markings and referee calls. To layout the explanations, once again you will
make use of the <DIV> tag to create a single entity out of multiple tags.

362 Chapter 17 Basketball Explained

http://www.quecorp.com

To accomplish this, you first create an element that overlays the explanation on the court,
creating a container element for the rest of the explanation text. Then you can format the actual
text of the explanation, and a headline for the explanation so that they line up in the appropriate
place in the tutorial.

You also need to use the visibility property to hide the explanations until the user selects the
appropriate icon. Listing 17.3 shows an example of how each explanation is constructed.

Listing 17.3 Laying Out an Explanation

01. <DIV id=”Court4Exp” STYLE=”position: absolute; top: 25px; left: 25px;
➥height: 500px; width: 450px; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
02. <IMG id=”Court4Img” STYLE=”position: absolute; z-index: 1;
➥visibility: visible;” SRC=”lane.gif”>
03.
04. The lane is the area underneath the basket.

05. At the top of the lane is the foul line, and

06. offensive players are only allowed to occupy

07. the lane for three seconds at a time.
08.
09.
10. <SPAN id=”Court4Head” STYLE=”position: absolute; top: 300; left: 25;
➥font-family: sans-serif;”>
11. <H1>The Lane</H1>
12.
13. </DIV>

Listing 17.3 uses the <DIV> tag in line 1 to create an overall container for one of the court
marking explanations. In line 3, the tag is used to place the written explanation for the
court marking. Line 10 uses the tag again to place the headline for the explanation.

You should note that the entire explanation is constructed of three separate elements: the
explanation image, headline, and text. All these elements are grouped into a single element
using the <DIV> tag. This enables you to add precision to the element’s layout by positioning
each element exactly where you want it, as shown in figure 17.6.

You will also notice that you are preparing the explanations to receive and process events as
well. At the end of line 1, the event handler onclick=“reset();” enables the explanation to be
reset when the user clicks the explanation. Of course, right now it will not do anything, but it
will soon enough.

363

17

VI
Part

Ch

Scripting the Functionality
With all the elements in place, all that remains to make the basketball tutorial complete is to
script the functionality. To accomplish this you will need to script a number of tasks. Table 17.1
lists the different elements of functionality you need in the game and the functions needed to
implement them.

Table 17.1 Required Scripting Elements for the Basketball Tutorial

Functionality Needed Function to Implement

Showing and Hiding Explanations showObject()
hideObject()

Graying Out the Court showScreenCourt()
hideScreenCourt()

Highlighting Selections highlight()
lowlight()

Resetting the Tutorial reset()

The sections that follow show how to construct each one of these functions.

FIG. 17.6
A formatted
explanation.

Scripting the Functionality

364 Chapter 17 Basketball Explained

http://www.quecorp.com

showObject() and hideObject()
The first task on the list is to write the functions that display and hide the explanations.

To show the explanation, the first thing you need to know is what element the user has clicked.
You can accomplish this by exploiting the fact that the window will record events, such as a
mouse click, and then make available the ID of the element that was clicked. So, the following
code:

var srcElement;

declares the srcElement variable that you will use to track the element that has been clicked.
Next, the line:

srcElement = window.event.srcElement;

assigns the ID obtained from window.event.srcElement to the srcElement variable. With the
value of the element generating the event, you can use the srcElement variable to determine
which of the icons has been clicked.

To determine which icon has been clicked, and what explanation to show, you need to use a
series of if…then statements:

if (srcElement.id == “Ref1”)
 Ref1Exp.style.visibility = “visible”;

This code compares the ID of the element that has been clicked with the names that you have
assigned to each element. From the IDs provided by srcElement and the names you have as-
signed your elements, you can then set the visibility property for the appropriate explanation to
be visible. This will display the full explanations. Listing 17.4 shows a truncated version of the
completed function.

Listing 17.4 The showObject() Function

01. function showObject() {
02.
03. reset();
04. showScreenCourt();
05. var srcElement;
06. srcElement = window.event.srcElement;
07. if (srcElement.id == “Ref1”)
08. Ref1Exp.style.visibility = “visible”;
09. …
10.
11. if (srcElement.id == “Court1”)
12. Court1Exp.style.visibility = “visible”;
13. …
14. if (srcElement.id == “Court5”)
15. Court5Exp.style.visibility = “visible”;
16.
17. }

365

17

VI
Part

Ch

You might notice that before the function determines which icon has been clicked and displays
its explanation, it first calls the reset() and showScreenCourt() functions on lines 3 and 4.

The reset() function resets the application to make sure all elements are in order before dis-
playing new information. The showScreenCourt() function grays out the elements on the court
that are unnecessary. Both of these functions are covered in full detail in the next section in the
chapter.

To hide explanations, you can use the exact same function from listing 17.4 with one small
change. Instead of using the if statements to set the visibility property to “visible,” you will set
the visibility property to “hidden.” In other words, all the lines in the form of:

Court1Exp.style.visibility = “visible”;

become

Court1Exp.style.visibility = “hidden”;

By changing one simple property, you alter the functionality of the entire function.

showScreenCourt() and hideScreenCourt()
When you display the explanations, you want the court elements to appear “grayed” out, so
that they do not interfere with the readability of the explanation. This is similar to screening an
image in graphics design so that it appears lighter on the page. Doing so simply enables you to
retain the placement of the elements in the original for reference, but to place text over the
elements and have it be readable. A similar technique is also used in many graphic user inter-
faces to signify that a button, control, or element is not available. A button that is “grayed out”
in a dialog box, for example, cannot be clicked. To do this, you need to hide the court elements,
and replace them with a screened image of the court.

As a challenge, try implementing a similar technique using a multimedia filter. ■

The function you write will hide all the court images, and then set the visibility property of the
screened image to “visible.” Listing 17.5 shows the full code for this functionality.

Listing 17.5 Graying Out the Court

01. function showScreenCourt() {
02.
03. Title.style.visibility = “hidden”;
04. Court.style.visibility = “hidden”;
05. XPoint.style.visibility = “hidden”;
06. HalfCourt.style.visibility = “hidden”;
07. Key.style.visibility = “hidden”;
08. Lane.style.visibility = “hidden”;
09. Basket.style.visibility = “hidden”;
10. Screen.style.visibility = “visible”;
11. }

N O T E

Scripting the Functionality

366 Chapter 17 Basketball Explained

http://www.quecorp.com

Of course, showScreenCourt() is a fairly simple function, and one that you can duplicate to
create the function that returns the court to its normal status. By simply reversing the state-
ments from:

Basket.style.visibility = “hidden”;

to

Basket.style.visibility = “visible”;

where applicable, you can create a similar function to showScreenCourt() called
hideScreenCourt(), which will essentially reset the court.

highlight() and lowlight()
As mentioned previously, when the user clicks an icon, you want that icon to be highlighted to
reinforce the explanation that is given for that icon.

To accomplish this, you need to create two functions: one called highlight() that creates a
border around the icon that has been clicked; and another called lowlight() that removes the
border.

Listing 17.6 shows the highlight() function that makes use of the srcElement variable again.

Listing 17.6 The highlight() Function

01. function highlight() {
02.
03. var srcElement;
04. srcElement = window.event.srcElement;
05. srcElement.style.border = “solid”;
06.
07. }

The highlight() function uses the srcElement variable to track the ID of the element that has
been clicked, which in this case is one of the icons. Then, because the border is already part of
the icon’s style definition, you can manipulate it directly with line 5, which takes the border
property for the icon and changes it from “none” to “solid,” effectively highlighting the icon.
You can change this function into the lowlight() function by changing the border property again
from line 5:

srcElement.style.border = “none”;

Effectively, this line resets the border style to “none,” removing the highlight from the icon.

reset()
In the course of displaying the various explanations for referee signals and court markings,
there are times when it would be nice to reset the application to make sure everything is func-
tioning correctly, and everything is ready to go for the next example. The reset() function
serves this purpose.

367

17

VI
Part

Ch

As with all the previously covered functions, the functionality of the reset() function is very
straightforward. It simply takes all the elements back to their original settings in one function,
so it doesn’t need to be done by hand. The first thing you need to do is hide the image of the
grayed out court by calling the hideScreenCourt() function.

Then, you need to call the lowlight() function to make sure that the current highlighted ele-
ment is no longer highlighted.

Next, you engage in a series of statements that reset the visibility of all the original elements to
their original states. The process is simply repeated for all the elements on the page. Listing
17.7 shows the truncated final code for the reset() function.

Listing 17.7 The reset() Function

01. function reset() {
02.
03. hideScreenCourt();
04. lowlight();
05. Title.style.visibility = “visible”;
06. Ref1Exp.style.visibility = “hidden”;
07. …
08. Ref6Exp.style.visibility = “hidden”;
09. Ref1.style.border = “none”;
10. …
11. Ref6.style.border = “none”;
12.
13. Court1Exp.style.visibility = “hidden”;
14. …
15. Court5Exp.style.visibility = “hidden”;
16.
17. Court1.style.border = “none”;
18. …
19. Court5.style.border = “none”;
20. }

The Final Page!
Now that you have completed the functions for the basketball tutorial, it’s time to assemble
everything into the final code, as shown in listing 17.8. Within a typical Dynamic HTML docu-
ment, you first list the functions, followed by all the layout details for the court elements, the
icons, and finally the explanations. All the pieces fit together to create the final basketball tuto-
rial code, shown in listing 17.8.

Listing 17.8 The Final Code for the Basketball Tutorial

001. <HTML>
002. <HEAD>
003. <TITLE>Simple Basketball Tutorial</TITLE>
004.

The Final Page!

continues

368 Chapter 17 Basketball Explained

http://www.quecorp.com

005. <SCRIPT>
006.
007. function showObject() {
008.
009. reset();
010. showScreenCourt();
011. var srcElement;
012. srcElement = window.event.srcElement;
013. if (srcElement.id == “Ref1”)
014. Ref1Exp.style.visibility = “visible”;
015. if (srcElement.id == “Ref2”)
016. Ref2Exp.style.visibility = “visible”;
017. if (srcElement.id == “Ref3”)
018. Ref3Exp.style.visibility = “visible”;
019. if (srcElement.id == “Ref4”)
020. Ref4Exp.style.visibility = “visible”;
021. if (srcElement.id == “Ref5”)
022. Ref5Exp.style.visibility = “visible”;
023. if (srcElement.id == “Ref6”)
024. Ref6Exp.style.visibility = “visible”;
025. if (srcElement.id == “Court1”)
026. Court1Exp.style.visibility = “visible”;
027. if (srcElement.id == “Court2”)
028. Court2Exp.style.visibility = “visible”;
029. if (srcElement.id == “Court3”)
030. Court3Exp.style.visibility = “visible”;
031. if (srcElement.id == “Court4”)
032. Court4Exp.style.visibility = “visible”;
033. if (srcElement.id == “Court5”)
034. Court5Exp.style.visibility = “visible”;
035. }
036.
037. function hideObject() {
038.
039. hideScreenCourt();
040.
041. lowlight();
042. var srcElement;
043. srcElement = window.event.srcElement;
044. if (srcElement.id == “Ref1”)
045. Ref1Exp.style.visibility = “hidden”;
046. if (srcElement.id == “Ref2”)
047. Ref2Exp.style.visibility = “hidden”;
048. if (srcElement.id == “Ref3”)
049. Ref3Exp.style.visibility = “hidden”;
050. if (srcElement.id == “Ref4”)
051. Ref4Exp.style.visibility = “hidden”;
052. if (srcElement.id == “Ref5”)
053. Ref5Exp.style.visibility = “hidden”;
054. if (srcElement.id == “Ref6”)
055. Ref6Exp.style.visibility = “hidden”;
056. if (srcElement.id == “Court1”)
057. Court1Exp.style.visibility = “hidden”;

Listing 17.8 Continued

369

17

VI
Part

Ch

058. if (srcElement.id == “Court2”)
059. Court2Exp.style.visibility = “hidden”;
060. if (srcElement.id == “Court3”)
061. Court3Exp.style.visibility = “hidden”;
062. if (srcElement.id == “Court4”)
063. Court4Exp.style.visibility = “hidden”;
064. if (srcElement.id == “Court5”)
065. Court5Exp.style.visibility = “hidden”;
066. }
067.
068. function showScreenCourt() {
069.
070. Title.style.visibility = “hidden”;
071. Court.style.visibility = “hidden”;
072. XPoint.style.visibility = “hidden”;
073. HalfCourt.style.visibility = “hidden”;
074. Key.style.visibility = “hidden”;
075. Lane.style.visibility = “hidden”;
076. Basket.style.visibility = “hidden”;
077. Screen.style.visibility = “visible”;
078. }
079.
080. function hideScreenCourt() {
081.
082. Title.style.visibility = “visible”;
083. Court.style.visibility = “visible”;
084. XPoint.style.visibility = “visible”;
085. HalfCourt.style.visibility = “visible”;
086. Key.style.visibility = “visible”;
087. Lane.style.visibility = “visible”;
088. Basket.style.visibility = “visible”;
089. Screen.style.visibility = “hidden”;
090. }
091.
092. function reset() {
093.
094. hideScreenCourt();
095. lowlight();
096. Title.style.visibility = “visible”;
097. Ref1Exp.style.visibility = “hidden”;
098. Ref2Exp.style.visibility = “hidden”;
099. Ref3Exp.style.visibility = “hidden”;
100. Ref4Exp.style.visibility = “hidden”;
101. Ref5Exp.style.visibility = “hidden”;
102. Ref6Exp.style.visibility = “hidden”;
103. Ref1.style.border = “none”;
104. Ref2.style.border = “none”;
105. Ref3.style.border = “none”;
106. Ref4.style.border = “none”;
107. Ref5.style.border = “none”;
108. Ref6.style.border = “none”;
109.
110. Court1Exp.style.visibility = “hidden”;
111. Court2Exp.style.visibility = “hidden”;
112. Court3Exp.style.visibility = “hidden”;
113. Court4Exp.style.visibility = “hidden”;

The Final Page!

continues

370 Chapter 17 Basketball Explained

http://www.quecorp.com

114. Court5Exp.style.visibility = “hidden”;
115. Court1.style.border = “none”;
116. Court2.style.border = “none”;
117. Court3.style.border = “none”;
118. Court4.style.border = “none”;
119. Court5.style.border = “none”;
120. }
121.
122. function highlight() {
123.
124. var srcElement;
125. srcElement = window.event.srcElement;
126. srcElement.style.border = “solid”;
127. }
128.
129. function lowlight() {
130.
131. var srcElement;
132. srcElement = window.event.srcElement;
133. srcElement.style.border = “none”;
134.
135. }
136.
137. </SCRIPT>
138. </HEAD>
139. <BODY>
140.
141. <IMG id=”Court” STYLE=”position: absolute; top: 25px; left: 25;
➥z-index: 0; visibility: visible;” SRC=”court.gif”>
142. <IMG id=”XPoint” STYLE=”position: absolute; top: 25px; left: 25;
➥z-index: 1; visibility: visible;” SRC=”3point.gif”>
143. <IMG id=”HalfCourt” STYLE=”position: absolute; top: 25px; left: 25;
➥z-index: 2; visibility: visible;” SRC=”halfcourt.gif”>
144. <IMG id=”Key” STYLE=”position: absolute; top: 25px; left: 25; z-index: 3;
➥visibility: visible;” SRC=”key.gif”>
145. <IMG id=”Lane” STYLE=”position: absolute; top: 25px; left: 25; z-index: 4;
➥visibility: visible;” SRC=”lane.gif”>
146. <IMG id=”Basket” STYLE=”position: absolute; top: 25px; left: 25;
➥z-index: 5; visibility: visible;” SRC=”basket.gif”>
147. <IMG id=”Screen” STYLE=”position: absolute; top: 25px; left: 25;
➥z-index: 0; visibility: hidden;” SRC=”court-screen.gif”>
148.
149. <DIV id=”Title” STYLE=”position: absolute; top: 325; left: 50;
➥font-family: sans-serif; color: orange; visibility: visible;”>
150. <H1>A Basketball Tutorial</H1>
151. </DIV>
152.
153. <!— The following DIV tag specifies the scrolling box for
154. official’s signals. —>
155.
156. <DIV id=”Official” STYLE=”position: absolute; top: 25; left: 475;
➥height: 340; width: 145; overflow: scroll”>

Listing 17.8 Continued

371

17

VI
Part

Ch

157. <IMG id=”Ref1" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”jumpball.gif”>
158. <IMG id=”Ref2" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”3sec.gif”>
159. <IMG id=”Ref3" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”travel.gif”>
160. <IMG id=”Ref4" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”foul.gif”>
161. <IMG id=”Ref5" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”one-in-one.gif”>
162. <IMG id=”Ref6" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”timeout.gif”>
163.
164. <IMG id=”Court1" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”basket-small.gif”>
165. <IMG id=”Court2" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”halfcourt-small.gif”>
166. <IMG id=”Court3" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”key-small.gif”>
167. <IMG id=”Court4" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”lane-small.gif”>
168. <IMG id=”Court5" STYLE=”border: none; border-width: thin;
➥border-color: orange;” onclick=”showObject(); highlight()”;
➥ondblclick=”reset()”; SRC=”3point-small.gif”>
169. </DIV>
170.
171. <!— The following DIV tags define the location and text for
172. explanations for the ref signals. —>
173.
174. <DIV id=”Ref1Exp” STYLE=”position: absolute; top: 75; left: 75;
➥height: 500; width: 450; font-family: sans-serif; visibility: hidden;”
➥onclick=”reset();”>
175.
176.
177. In the event of stopped play, some foul situations,

178. and the start of the game, a Jump Ball is called.

179. Two players compete to tip the ball to their side

180. of the court and their teammates.
181.
182. <SPAN id=”Ref1Head” STYLE=”position: absolute; top: 250; left: 0;
➥font-family: sans-serif;”>
183. <H1>Jump Ball</H1>
184.
185. </DIV>
186.

The Final Page!

continues

372 Chapter 17 Basketball Explained

http://www.quecorp.com

187. <DIV id=”Ref2Exp” STYLE=”position: absolute; top: 75; left: 75;
➥height: 500; width: 450; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
188.
189.
190. A 3 Second Violation is called when a member of

191. the offensive team is positioned in the 3 second

192. lane for longer than 3 seconds.

193.
194. <SPAN id=”Ref2Head” STYLE=”position: absolute; top: 250; left: 0;
➥font-family: sans-serif;”>
195. <H1>3 Second Violation</H1>
196.
197. </DIV>
198.
199. <DIV id=”Ref3Exp” STYLE=”position: absolute; top: 75; left: 75;
➥height: 500; width: 450; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
200.
201.
202. Traveling is called when a player who has been

203. dribbling the ball, stops dribbling but still moves

204. forward. Once a player stops dribbling, they must

205. pass the ball.
206.
207. <SPAN id=”Ref3Head” STYLE=”position: absolute; top: 250; left: 0;
➥font-family: sans-serif;”>
208. <H1>Traveling</H1>
209.
210. </DIV>
211.
212. <DIV id=”Ref4Exp” STYLE=”position: absolute; top: 75; left: 75;
➥height: 500; width: 450; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
213.
214.
215. When one player makes physical contact with

216. another player while the ball is in play, a foul

217. is called. Other types of fouls include

218. intentional and technical.
219.
220. <SPAN id=”Ref4Head” STYLE=”position: absolute; top: 250; left: 0;
➥font-family: sans-serif;”>
221. <H1>Personal Foul</H1>
222.
223. </DIV>
224.
225.
226. <DIV id=”Ref5Exp” STYLE=”position: absolute; top: 75; left: 75;
➥height: 500; width: 450; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
227.
228.
229. A One-in-One shot is called for certain types

Listing 17.8 Continued

373

17

VI
Part

Ch

230. of fouls. The player receives one penalty shot

231. and if they make the basket, they are allowed

232. one more.
233.
234. <SPAN id=”Ref5Head” STYLE=”position: absolute; top: 250; left: 0;
➥font-family: sans-serif;”>
235. <H1>One-in-One Shot</H1>
236.
237. </DIV>
238.
239. <DIV id=”Ref6Exp” STYLE=”position: absolute; top: 75; left: 75;
➥height: 500; width: 450; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
240.
241.
242. This is called when a coach or member of one of the

243. teams has called for a timeout. Officials may also

244. call timeouts that do not count against the teams.
245.
246. <SPAN id=”Ref6Head” STYLE=”position: absolute; top: 250; left: 0;
➥font-family: sans-serif;”>
247. <H1>Timeout Called</H1>
248.
249. </DIV>
250.
251. <DIV id=”Court1Exp” STYLE=”position: absolute; top: 25px; left: 25px;
➥height: 500px; width: 450px; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
252. <IMG id=”Court1Img” STYLE=”position: absolute; z-index: 1;
➥visibility: visible;” SRC=”basket.gif”>
253.
254. Players score points for their teams by putting

255. the ball through the basket. A basket is worth

256. two points except in 3 point situations and

257. certain fouls.
258.
259.
260. <SPAN id=”Court1Head” STYLE=”position: absolute; top: 300; left: 25;
➥font-family: sans-serif;”>
261. <H1>The Basket</H1>
262.
263. </DIV>
264.
265. <DIV id=”Court2Exp” STYLE=”position: absolute; top: 25px; left: 25px;
➥height: 500px; width: 450px; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
266. <IMG id=”Court2Img” STYLE=”position: absolute; z-index: 1;
➥visibility: visible;” SRC=”halfcourt.gif”>
267.
268. The half-court line divides

269. the court into two halves.
270.
271.
272. <SPAN id=”Court2Head” STYLE=”position: absolute; top: 300; left: 25;
➥font-family: sans-serif;”>
273. <H1>The Half-court Line</H1>

The Final Page!

continues

374 Chapter 17 Basketball Explained

http://www.quecorp.com

274.
275. </DIV>
276.
277. <DIV id=”Court3Exp” STYLE=”position: absolute; top: 25px; left: 25px;
➥height: 500px; width: 450px; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
278. <IMG id=”Court3Img” STYLE=”position: absolute; z-index: 1;
➥visibility: visible;” SRC=”key.gif”>
279.
280. The Top of the Key is used in jump ball

281. situations and for foul shots.
282.
283.
284. <SPAN id=”Court3Head” STYLE=”position: absolute; top: 300; left: 25;
➥font-family: sans-serif;”>
285. <H1>Top of the Key</H1>
286.
287. </DIV>
288.
289. <DIV id=”Court4Exp” STYLE=”position: absolute; top: 25px; left: 25px;
➥height: 500px; width: 450px; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
290. <IMG id=”Court4Img” STYLE=”position: absolute; z-index: 1;
➥visibility: visible;” SRC=”lane.gif”>
291.
292. The lane is the area underneath the basket.

293. At the top of the lane is the foul line, and

294. offensive players are only allowed to occupy

295. the lane for three seconds at a time.
296.
297.
298. <SPAN id=”Court4Head” STYLE=”position: absolute; top: 300; left: 25;
➥font-family: sans-serif;”>
299. <H1>The Lane</H1>
300.
301. </DIV>
302.
303. <DIV id=”Court5Exp” STYLE=”position: absolute; top: 25px; left: 25px;
➥height: 500px; width: 450px; font-family: sans-serif;
➥visibility: hidden” onclick=”reset();”>
304. <IMG id=”Court5Img” STYLE=”position: absolute; z-index: 1;
➥visibility: visible;” SRC=”3point.gif”>
305.
306. Baskets made from behind the 3 point line

307. count for 3 points, as opposed to a normal

308. basket’s 2 points.
309.
310.
311. <SPAN id=”Court5Head” STYLE=”position: absolute; top: 300; left: 25;
➥font-family: sans-serif;”>
312. <H1>The 3 Point Line</H1>
313.
314. </DIV>

Listing 17.8 Continued

375

17

VI
Part

Ch

315.
316. </BODY>
317. </HTML>

When it all comes together, you have the final application, shown in figure 17.7.

FIG. 17.7
The final basketball
tutorial in action.
Clicking an icon shows
an explanation of that
aspect of the game.

From Here….

The tutorial now launches in the state shown in figure 17.5, and is ready for user interaction.
By single-clicking any of the icons in the scroll box on the right, an explanation for the given
referee signal, or court marking, is displayed. The user can reset the tutorial by clicking the
explanation, or by clicking the selected icon again. Or the user can simply click another icon to
learn more about the game.

Of course, the basketball tutorial might not help your selections in the next NBA draft; how-
ever, it is a pretty compelling example of how you can create an interactive tutorial, with appli-
cation functionality in a simple Dynamic HTML page that downloads quickly and efficiently.

From Here…
Now you have some practical examples under your belt of how Dynamic HTML can be used to
increase interactivity and add some multimedia excitement to presentations and explanations.
So far you have looked at ways the Dynamic HTML can improve or revitalize applications that
were still possible, even in a limited form, with static HTML. But before you jump in with both
feet and redesign all your pages with Dynamic HTML, take a look at Chapters 18 and 19:

■ Chapter 18, “Building an Online Catalog,” takes a look at how Dynamic HTML can be
used to create an online catalog with a variety of functionality.

376 Chapter 17 Basketball Explained

http://www.quecorp.com

■ Chapter 19, “Building the Smashout Video Game,” caps it all off by creating a fully
functional version of a “breakout” style game, complete with collision detection, showcas-
ing the power of Dynamic HTML.

377

18

VI
Part

Ch

D

18C H A P T E R

Design

Explore the process of designing an
application that uses data binding.

Table Binding

Use repeated table binding to view
all items in the catalog at once.

Sort and Filter

Learn how to use sorting and
filtering to enhance your applica-
tions.

Current Record Binding

Explore the use of current record
binding to show detailing informa-
tion about one product at a time.

Building an Online
Catalog

ata binding is one of the most important real-world as-
pects of Dynamic HTML. This chapter puts data binding
to work in an application that comes up quite often on the
World Wide Web—an online catalog.

Over the course of this chapter, you will build an online
catalog for a fictional musical instrument company called
Burnham Brothers. Burnham Brothers builds a variety of
musical instruments across several categories and over a
broad price range.

For this application, you will assume that Burnham Broth-
ers wants to create a catalog that provides several key
features to its potential customers:

378 Chapter 18 Building an Online Catalog

http://www.quecorp.com

■ Burnham Brothers wants customers to be able to get an overall feel for its product line
by allowing the customer to see a “table of contents” containing its products.

■ Because many of its customers will only be interested in a certain type of instrument,
Burnham Brothers wants the customer to be able to select which types of instruments
the table will show.

■ Some customers will be constrained by price. Therefore, Burnham Brothers wants the
customer to be able to limit the products they see based upon price.

■ In addition to the table of their products, Burnham Brothers wants the customer to be
able to navigate through a different view that shows one product at a time, with full
information about each product.

This chapter builds the project in three steps. In the first step, you will build the basic founda-
tion. This step includes setting up the data required for the application, building the basic
HTML file, and showing a basic table containing the products.

In the second step, you will add more functionality to the table view of the products by provid-
ing the user with two advanced options. First, the user will be able to sort the products based
upon selected criteria. Second, the user will be able to filter the products based upon product
type and maximum cost.

Finally, you will add the product view. The product view shows only one product at a time and
has navigation buttons to move through the product line. This feature also supports filtering
from the table view. ■

Laying the Groundwork
When developing an application such as this, it’s important at the outset to concentrate on the
basics and get them working before moving on to more sophisticated features. This ensures
that you don’t get 80 percent of the way into the development process and find out that you
have made a basic error at the beginning that precludes you from moving forward.

In addition to setting up the basic HTML in this section, you will learn three important founda-
tion aspects for an online catalog:

■ Determining which Data Source Object to use

■ Setting up the structure of the data that will contain the products and the information
about them

■ Specifying the tabular form used to display the products

The Basic HTML
Because you will be using Dynamic HTML in this application, you need to start with the
boilerplate code contained in any HTML document, specifying that this is the catalog application:

<HTML>
<HEAD>
 <TITLE>Catalog</TITLE>

379

18

VI
Part

Ch

</HEAD>
<BODY>
</BODY>
</HTML>

In addition, inside the body you need to add a basic header to indicate that this is the catalog
application for the Burnham Brothers company:

<H1>Burnham Brothers</H1>
<H2>Product Catalog</H2>

Specifying the Data Source
One of the most important decisions you need to make in the development of a catalog is how
to retrieve the data that contains the product descriptions or whatever data you’re incorporat-
ing in your catalog. You can do this in a variety of ways.

You could use a CGI script on the server to retrieve the data. This is a common way of perform-
ing data retrieval on the web, and a great deal of example code is available showing how to
accomplish this. As discussed in Chapter 11, “Introduction to Data Binding,” this method has
many drawbacks.

One of the great benefits of Dynamic HTML is its intrinsic capability to perform data binding
through Data Source Objects along with the data binding HTML extensions. These aspects of
Dynamic HTML are employed in this chapter’s example where you will learn the straight-
forward use of data binding constructs.

You will use a Data Source Object for the catalog. The next big decision is which Data Source
Object to use. This decision is predicated on where your data is going to be stored.

If the data you will be retrieving will be stored in a relational database, such as Microsoft SQL
Server or an Oracle RDBMS, you will probably want to use the Advanced Data Connector that
is shipped with Internet Explorer 4.0.

However, the requirements in the Burnham Brothers’ online catalog are much simpler. You
want to have a list of products along with information about them that is easy to retrieve via
data binding. The Tabular Data Control, which also ships with Internet Explorer 4.0, is just
what you need.

The Tabular Data Control was discussed in some detail in Chapter 12, “Using Data Source
Objects,” so only aspects of the Tabular Data Control not previously covered are discussed
here.

The Tabular Data Control will be a standard one. First, you need to place the products that will
be displayed in a file called “items.txt”. Because you will want to do sorting and filtering on the
data, you will also specify that a header will be located in the data file. Call the data source
“elem_list” because it will contain a list of the elements in the data file:

<OBJECT id=elem_list CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83">
 <PARAM NAME=”DataURL” VALUE=”items.txt”>
 <PARAM NAME=”UseHeader” VALUE=”True”>
</OBJECT>

Laying the Groundwork

380 Chapter 18 Building an Online Catalog

http://www.quecorp.com

Setting Up the Data File
Burnham Brothers decides that it wants to make five aspects of each product available in the
catalog as follows:

■ Product—The name of the product.

■ Type—The type of the product. Burnham Brothers produces three types of products:
horn, percussion, and string.

■ Price—The price of the product.

■ Features—Any special features of the product.

■ Image—An image that represents the product.

Because you will be using a header for the data file, it makes sense to use names for each col-
umn that match each aspect. Because the structure of the data file for the Tabular Data Control
is so straightforward, you could list the name for each column separated by commas and that
would be enough, as shown in the following line:

Product,Type,Price,Features,Image

This is one place where looking ahead is a good idea, however. Because you will be sorting
later on, you want to make sure that columns sort correctly. The default method of sorting is
alphabetical, and in all cases but one, this method should be sufficient.

The one case where alphabetical sorting will not work correctly is “Price.” Because the price
will be represented by a number, you want it to sort as such. Additionally, the price could con-
tain cents, so you need to take that into account.

The data type that you want to specify for “Price” to make it sort numerically is “FLOAT” be-
cause prices sort the same as floating point numbers due to the decimal point:

Product,Type,Price:FLOAT,Features,Image

Now that you have set up the header, it’s time to specify some sample data. You want to ensure
that you have products that vary widely in price and that each type of product (horn, percus-
sion, and string) is represented. Create a file called “items.txt” that contains this data:

Product,Type,Price:FLOAT,Features,Image
Accordian,horn,249.95,Cherry Wood Case,
Acoustic Guitar,string,149.95,Hand Carved,
Cymbals,percussion,79.95,Special Titanium/Brass Alloy,<IMG SRC=images/
➥cymbals.gif>
French Horn,horn,379.95,Oversize valves,
Grand Piano,string,4299.95,Includes Bench,
Electric guitar,string,423.95,Automatically tunes itself,<IMG SRC=images/
➥guitar.gif>
Harp,string,799.95,Includes free stand,
Saxophone,horn,549.95,All brass construction,
Snare drum,percussion,455.95,brass rings,
Trumpet,horn,699.95,Includes free professional baffle,<IMG SRC=images/
➥trumpet.gif>
Tuba,horn,899.95,Special platinum alloy construction,
Violin,string,1499.95,Special Austrian Strings,

381

18

VI
Part

Ch

Specifying the Table View
You know from the specification that Burnham Brothers wants the main view of the data to be
via a table. In addition, they also want three aspects of each product to be contained in the
table:

■ Product Name

■ Product Type

■ Product Price

You have already set up the Data Source Object and the data file, now all you have to do is
provide a way of viewing the data. This is a perfect place to use Dynamic HTML’s repeated
table binding, because it automatically generates a table row for every product in the data file.

Begin by specifying a table that consumes data from the Data Source Object (elem_list) and
name it “elemtbl”. In addition, you will want to specify a table column for the product name,
bound to the “Product” column in the data set. You will want to bind a row to “Type” and
“Price” as well, as demonstrated in the following code:

<TABLE ID=elemtbl datasrc=#elem_list>
 <TBODY>
 <TR>
 <TD></TD>
 <TD></TD>
 <TD></TD>
 </TR>
 </TBODY>
</TABLE>
</DIV>

Again, if these concepts are not clear to you, make sure you refer back to Chapters 11 and 12,
which cover the basics of data binding and Data Source Objects.

This table definition has the effect of creating one table row for each row in the Data Source
Object and displaying the Product, Type, and Price for each of those rows.

The Online Catalog Foundation
Now that you have enough code to get a basic version of the catalog application up and run-
ning, it’s time to piece together the application thus far into a file called “catalog1.htm” as
shown in listing 18.1:

Listing 18.1 The Foundations of the Online Catalog

01. <HTML>
02. <HEAD>
03. <TITLE>Catalog</TITLE>
04. </HEAD>
05. <BODY>
06.

continues

Laying the Groundwork

382 Chapter 18 Building an Online Catalog

http://www.quecorp.com

07. <H1>Burnham Brothers</H1>
08. <H2>Product Catalog</H2>
09.
10. <OBJECT id=elem_list CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83">
11. <PARAM NAME=”DataURL” VALUE=”items.txt”>
12. <PARAM NAME=”UseHeader” VALUE=”True”>
13. </OBJECT>
14.
15. <TABLE id=elemtbl datasrc=#elem_list>
16. <TBODY>
17. <TR>
18. <TD></TD>
19. <TD></TD>
20. <TD></TD>
21. </TR>
22. </TBODY>
23. </TABLE>

Figure 18.1 shows the output generated when you run the code in listing 18.1. Although you’re
nowhere near done yet, this code generates enough information so that you know you’re on
the right track.

Listing 18.1 Continued

FIG. 18.1
Output from online
catalog foundation.

First, you know the Tabular Data Control Data Source Object is working because data is being
generated. Second, you know that the data file is constructed correctly because all the rows of
the data file are transferred to and displayed in the application.

383

18

VI
Part

Ch

Now you have all the products in the online catalog displayed in the table. The next step that
you will want to add is the capability to filter and sort these products.

Providing Sort and Filter Capabilities
Now you’ve got the basic data binding aspects of the application up and running; however, the
application isn’t interactive at all. In many ways, you have the equivalent of a static web page
that has a table with data hard-coded into it.

Even at this early stage, however, you’re a large step ahead of hard-coding data. If you want to
change the products displayed on this page, all you need to change are the product listings in
“items.txt”; you do not need to touch the HTML page.

In this section you will add two methods of interacting with this table view of the products:

■ Sorting the table based upon product, type, or price

■ Filtering the table based on type or maximum price

By the end of this section you will be solidly into the kind of application capabilities that would
be difficult to achieve with regular HTML. With Dynamic HTML, however, adding these capa-
bilities becomes almost simple.

Sorting Data by Column
The first thing you need to do is set up a mechanism by which the user can sort the table of
products based upon the product name, the type of product, or the price of the product.

Start this process by adding a table head to the repeated table and specify that this table head
will contain one row:

<THEAD><TR>
</TR>

Now you need to create a column heading for each of the table columns. You may have noticed
from looking at the results from the previous section that the columns were not quite wide
enough to handle the data contained in them, resulting in a less than visually appealing display.
You can correct this by making the first heading 150 pixels wide—more than wide enough to
handle the product names:

<TD WIDTH=150>

Now you want to show the name of the column heading. Because this will be the name of the
column and not actually a row in the dataset itself, you want to make sure that the column
heading is definitely set apart from the other items that occur below it. You can do this by
making the column heading bold and blue in a sans-serif font. In addition, because you want
the user to be able to click the column heading to sort by that criteria, you will also underline it
to give the user a visual cue to click it:

<U>Product
</U>

Providing Sort and Filter Capabilities

384 Chapter 18 Building an Online Catalog

http://www.quecorp.com

Finally, because you want the user to be able to click the heading, you need a way to assign an
event handler to this heading. The easiest way to do this is by using a <DIV> tag. Then give the
heading an ID of “product” and have the function product_onclick() called whenever it is
clicked:

<TD WIDTH=150><DIV id=product onclick=”product_onclick()”>
 <U>
 Product</U></DIV></TD>

Next you need to repeat this process for the “Type” and “Price” headings. For the type head-
ing, call the type_onclick() function, and for the price heading, call the price_onclick() function:

<TD WIDTH=150><DIV id=type onclick=”type_onclick()”>
 <U>
 Type</U></DIV></TD>

<TD WIDTH=150><DIV id=price onclick=”price_onclick()”>
 <U>
 Price</U></DIV></TD>

To perform sorting with the Tabular Data Control, you must do two things:

■ Specify the column to sort upon by setting the SortColumn property of the Tabular Data
Control.

■ Execute the sort by calling the Reset() method of the Tabular Data Control.

Begin by building the product_onclick() function. First, you need to set the SortColumn prop-
erty to be “Product”:

function product_onclick() {
 elem_list.SortColumn = “Product”
 ...
}

Next, you need to call the Reset() method of the Tabular Data Control to actually run the sort:

function product_onclick() {
 elem_list.SortColumn = “Product”
 elem_list.Reset()
}

Believe it or not, that’s all you need to do to set up and run the sort. Now you need to create
the functions necessary to do the same thing with the type_onclick() and price_onclick() func-
tions:

function type_onclick() {
 elem_list.SortColumn = “Type”
 elem_list.Reset()
}

function price_onclick() {
 elem_list.SortColumn = “Price”
 elem_list.Reset()
}

385

18

VI
Part

Ch

Now if you click any of the headings of the table, the product list is sorted based upon that
criteria. If you click the “Price” heading, for instance, the products are sorted by price (see fig.
18.2).

FIG. 18.2
Setting up the online
catalog data by
category.

Specifying the User Interface Controls for Filtering
Next, you need to add the controls that will eventually enable the filtering of data based upon
user criteria. The specification for this application states that those two criteria are the type of
product and the price of the product.

Begin by creating the controls to filter by type. Call this control “Type.” First, make a label for
it that identifies it as the control for the type of product that is associated with the Type control:

<LABEL FOR=Type>Type: </LABEL>

Next, you need to create the control that enables the user to specify the type of product to
show. The three types of product are horn, string, and percussion. In addition to showing these
types, you also want the user to be able to specify the display of all the products.

Because the user is limited to four options, you will use a SELECT control. A SELECT control
is a drop-down listbox that enables a user to select from the list.

Provide the user with four options: ALL, Horn, String, and Percussion. Because you want the
product list to be filtered whenever the control is changed, set up the ftype_onchange() function
to be called whenever the user selects an item:

<SELECT id=Type onchange=”ftype_onchange()”>
 <OPTION SELECTED>ALL
 <OPTION>Horn

Providing Sort and Filter Capabilities

386 Chapter 18 Building an Online Catalog

http://www.quecorp.com

 <OPTION>String
 <OPTION>Percussion
</SELECT>

Now you will go through a similar process to specify the controls to set the filter for the maxi-
mum price. Set the name of the control that enables the user to set the price “Max.” Again, you
need to specify a label for this control:

<LABEL FOR=Max>Maximum Price: </LABEL>

Next, you need the control that enables the user to specify a price. Unlike the Type control, the
user is not limited to a set number of choices. The user might want to set the maximum
amount, for instance, to an arbitrary number such as $723. Because of this unpredictability
factor, you need to use a text input HTML control, with the width set to 50 to allow any number
into the tens of thousands of dollars:

<INPUT id=Max TYPE=TEXT value=”” STYLE=”width:50">

Finally, after the user enters the maximum dollar amount, you need to provide a way for the
user to inform the application to run that filter. Add a button with the label “Set” that calls the
max_onchange() function whenever it is clicked:

<INPUT TYPE=BUTTON id=Go value=”Set” onclick=”max_onchange()”>

Filtering Based on Product Type
Now that you have built the controls that enable the user to specify the filter to use, you need
to build the functions that actually run the filter.

Filtering is much like sorting, except that four things must be done to set the filter to use:

■ Set the criteria that will apply to the filter via the FilterCriterion property of the Tabular
Data Control. This criteria is based upon comparison operators. So, for equals you use
“=”, for not equals you use “<>”, and so on.

■ Set the column that will be filtered via the FilterColumn property of the Tabular Data
Control.

■ Set the FilterValue property containing the data that will be filtered against. If you do not
want to filter the data, set this to “no data.”

■ Call the Reset() method of the Tabular Data Control, which is called to run the filter.

Begin by building the ftype_onchange() function. You can start by setting the filter column to
“Type” because you know you will want to filter against the type of product:

function ftype_onchange() {
 elem_list.FilterColumn = “Type”
}

Next, you need to set the filter based upon the option that the user chooses. SELECT controls
are zero-based, so if the user chooses the first option, it will be 0. The index of the selected
option is available with the selectedIndex property of the control.

387

18

VI
Part

Ch

Begin with the 0 index, which corresponds to the ALL choice. When ALL is chosen, the user
wants to see all the types, so you need to set the FilterCriterion property to “<>” (not equals)
and the FilterValue property to “no value”, which ensures that all the products are shown:

 if (Type.selectedIndex == 0) {
 elem_list.FilterCriterion = “<>”
 elem_list.FilterValue = “no value”
 }

Next, if the user selects the Horn option, the index returned is 1. You need to set the
FilterCriterion to “=” and the FilterValue to “horn”:

 else if (Type.selectedIndex == 1) {
 elem_list.FilterCriterion = “=”
 elem_list.FilterValue = “horn”
 }

If the user selects the String option, the index returned is 2. You need to set the FilterCriterion
to “=” and the FilterValue to “string”:

 else if (Type.selectedIndex == 2) {
 elem_list.FilterCriterion = “=”
 elem_list.FilterValue = “string”
 }

Finally, if the user selects the Percussion option, the index returned is 3. You need to set the
FilterCriterion to “=” and the FilterValue to “percussion”:

 else {
 elem_list.FilterCriterion = “=”
 elem_list.FilterValue = “percussion”
 }

After you have set all the properties for the filter, you need to actually execute the filter. You
execute the filter with the Reset() method:

elem_list.Reset()

The results of choosing the “Horn” option to filter the products are shown in figure 18.3.

Filtering Data Based on Maximum Cost
Now you will create the max_onchange() function that is called whenever the user sets the
maximum price for the products.

This function needs to do four things to filter the products based upon the price entered:

■ Set the FilterColumn to “Price” because you are filtering on price.

■ Set the FilterCriterion to less than (<) because you want to show all the products below a
certain price.

■ Set the FilterValue to the value to be filtered against, which is contained in the value
property of the “Max” control.

■ Call the Reset() method of the Tabular Data Control to execute the filter.

The following function accomplishes these four objectives:

Providing Sort and Filter Capabilities

388 Chapter 18 Building an Online Catalog

http://www.quecorp.com

function max_onchange() {
 elem_list.FilterColumn=”Price”
 elem_list.FilterCriterion=”<“
 elem_list.FilterValue=Max.value;

 elem_list.Reset()
}

Examining the Online Catalog Foundation
This is a good point to stop and take a look at what you have accomplished so far. Listing 18.2
shows the code for the online catalog application up to this point (save this file as
catalog2.htm):

Listing 18.2 The Online Catalog with Data Sorting Mechanisms in Place
(catalog2.htm)

01. <HTML>
02. <HEAD>
03. <TITLE>Catalog</TITLE>
04. </HEAD>
05. <BODY>
06.
07. <SCRIPT LANGUAGE=JavaScript>
08. function product_onclick() {
09. elem_list.SortColumn = “Product”
10. elem_list.Reset()
11. }

FIG. 18.3
Filtering by type with
the “Horn” option.

389

18

VI
Part

Ch

12.
13. function type_onclick() {
14. elem_list.SortColumn = “Type”
15. elem_list.Reset()
16. }
17.
18. function price_onclick() {
19. elem_list.SortColumn = “Price”
20. elem_list.Reset()
21. }
22.
23.
24. function ftype_onchange() {
25. elem_list.FilterColumn = “Type”
26. if (Type.selectedIndex == 0) {
27. elem_list.FilterCriterion = “<>”
28. elem_list.FilterValue = “no value”
29. } else if (Type.selectedIndex == 1) {
30. elem_list.FilterCriterion = “=”
31. elem_list.FilterValue = “horn”
32. } else if (Type.selectedIndex == 2) {
33. elem_list.FilterCriterion = “=”
34. elem_list.FilterValue = “string”
35. } else {
36. elem_list.FilterCriterion = “=”
37. elem_list.FilterValue = “percussion”
38. }
39.
40. elem_list.Reset()
41. }
42.
43. function max_onchange() {
44. elem_list.FilterColumn=”Price”
45. elem_list.FilterCriterion=”<“
46. elem_list.FilterValue=Max.value;
47.
48. elem_list.Reset()
49. }
50.
51.
52. </SCRIPT>
53.
54. <H1>Burnham Brothers</H1>
55. <H2>Product Catalog</H2>
56.
57. <OBJECT id=elem_list CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83">
58. <PARAM NAME=”DataURL” VALUE=”items.txt”>
59. <PARAM NAME=”UseHeader” VALUE=”True”>
60. </OBJECT>
61.
62. <LABEL FOR=Type>Type: </LABEL>
63.
64. <SELECT ID=Type onchange=”ftype_onchange()”>
65. <OPTION SELECTED>ALL
66. <OPTION>Horn

continues

Providing Sort and Filter Capabilities

390 Chapter 18 Building an Online Catalog

http://www.quecorp.com

67. <OPTION>String
68. <OPTION>Percussion
69. </SELECT>
70.
71. <LABEL FOR=Max>Maximum Price: </LABEL>
72.
73. <INPUT id=Max TYPE=TEXT value=”” STYLE=”width:50">
74.
75. <INPUT type=BUTTON id=Go value=”Set” onclick=”max_onchange()”>
76. <HR>
77.
78.
79. <TABLE id=elemtbl datasrc=#elem_list>
80. <THEAD><TR>
81. <TD WIDTH=150><DIV ID=product onclick=”product_onclick()”>
82. <U>
83. Product</U></DIV></TD>
84. <TD WIDTH=150><DIV ID=type onclick=”type_onclick()”>
85. <U>
86. Type</U></DIV></TD>
87. <TD WIDTH=150><DIV ID=price onclick=”price_onclick()”>
88. <U>
89. Price</U></DIV></TD>
90. </TR></THEAD>
91. <TBODY>
92. <TR>
93. <TD></TD>
94. <TD></TD>
95. <TD></TD>
96. </TR>
97. </TBODY>
98. </TABLE>
99. </DIV>

You have come quite a way from the basic version earlier in the chapter. What was formerly a
static web page with no user interaction can now be modified by the user in several ways:

■ The user can sort based upon any of the table columns.

■ The user can filter the products based upon product type.

■ The user can filter the products based upon maximum price.

Figure 18.4 shows the results of using the maximum price filter to set the maximum cost to
$600.

Listing 18.2 Continued

391

18

VI
Part

Ch

Providing Detailed Product Information
Now you have completed almost all the functionality required for the user to view Burnham
Brothers’ products via a table. The next thing you need to tackle is the other view that
Burnham Brothers requested—the product view.

You need to add the functionality related to the product view in several steps:

1. Set up a mechanism to switch between the product and table views.

2. Add the actual product view of the data.

3. Navigate within the product view.

Switching Between Table View and Product View
The first aspect of the product view that you will tackle is switching between the table view and
the product view. You can achieve this in several ways.

The first method you could use is to make the table view one HTML page and the product view
another HTML page. This has the advantage of making a clean division between the views. By
making them separate pages, each page is smaller.

Making the pages separate, however, has two disadvantages. One reason that using Dynamic
HTML with data binding is so powerful is that you can reduce the amount of round trips to the
server. But requiring a server round trip for switching between what is essentially two views of
one set of data defeats this benefit.

FIG. 18.4
Filtering with a
maximum price of 600
dollars.

Providing Detailed Product Information

392 Chapter 18 Building an Online Catalog

http://www.quecorp.com

The other disadvantage to using two separate pages is that information needs to be communi-
cated between the two views. You want the current filter to remain the same in the product and
table views. To accomplish this using two pages, for instance, you would need to provide some
external method (via the server or passing parameters via the URL) for keeping track of this.

It is much simpler and more efficient to make both views part of the same page and have only
one view shown at a time. This approach enables you to use the same Tabular Data Control for
both views and much of the same HTML.

Begin by defining two buttons that will switch between the two views. The first button will
show the table view by calling the showTable() function, and the second will show the product
view by calling the showCurr() function:

<INPUT TYPE=BUTTON VALUE=”Table View” onclick=”showTable()”>
<INPUT TYPE=BUTTON VALUE=”Item View” onclick=”showCurr()”>

Because you will be showing and hiding the table and product view, you need to wrap them
inside a tag that will enable its entire contents to be shown or hidden. The <DIV> tag works
perfectly for this purpose. Place the table view code inside a <DIV> element with the ID of
“Table_View”:

<DIV id=”Table_View”>

 ... The code for the table view ...

</DIV>

When you create the product view, you will also create a DIV element to contain the product
view. The name of the ID for the product view will be “Curr_View,” which stands for the view of
the current product.

Armed with this knowledge, it’s time to build the functions to show each view. At first glance
you may think that the property you will want to set here to show and hide each view is the
visibility CSS property.

The visibility property is not sufficient for purposes here, however. The visibility property
states whether an element is shown or not, but does not affect its position. If you were to use it
here, one of the views would always be above the other, and when hidden, a large blank spot
would reside where it was.

Instead, you want to use the CSS display property, which enables an element to be completely
removed from rendering in the HTML page when it is set to none.

Therefore, you can create the showTable() function by setting the table view to be displayed
and the product view to not be displayed as follows:

function showTable() {
 Table_View.style.display=””;
 Curr_View.style.display=”none”;
}

393

18

VI
Part

Ch

Conversely, you can create the showCurr() function by setting the table view to not be dis-
played and the product view to be displayed as follows:

function showCurr() {
 Table_View.style.display=”none”;
 Curr_View.style.display=””;
}

Adding the Product View
The product view needs to show one product at a time. It needs to include all available informa-
tion about the product. Five different aspects of each product need to be shown:

■ An image representing the product

■ The name of the product

■ The type of the product

■ The price of the product

■ The features of the product

You need to start by specifying a <DIV> element that wraps the product view so the showCurr()
function can show and hide it. Give this <DIV> element the ID “Curr_View.” In addition, be-
cause you want the application to start with the table view, you need to set the CSS STYLE
display property to “none”:

<DIV id=”Curr_View” STYLE=”display:none”>

 ... The code for the current product view

</DIV>

Next, you want to start displaying the different aspects of the product. Begin with the image
representing the product. If you look back at the data file for the products, you will note that
the fields for the “Image” column are HTML IMG elements.

By structuring the data in this way, you can use the DATAFORMATAS property of HTML data
binding to tell the browser to render the HTML associated with the data element. Therefore,
those IMG elements specified in “items.txt” will cause an actual image to be displayed.

The way this is accomplished is with a <DIV> tag specifying that the source of the data
(DATASRC) will be the #elem_list, that the data field (DATAFLD) that you want is “Image,”
and finally that the data format (DATAFORMATAS) is “html”:

<DIV DATASRC=#elem_list DATAFLD=”Image”
 DATAFORMATAS=”html”></DIV>

Next, you want to show the name of the product. Provide a label next to the name of the prod-
uct to let the user know what that particular line represents. Accentuate this label with the
 tag to differentiate it from the actual name of the product.

Providing Detailed Product Information

394 Chapter 18 Building an Online Catalog

http://www.quecorp.com

You need to use a tag instead of a <DIV> tag because only text data will be loaded.
Finally, the DATASRC will be the #elem_list and the DATAFLD will be “Product”:

Product: <SPAN DATASRC=#elem_list
 DATAFLD=”Product”>

Perform this same process for the “Type,” “Price,” and “Features” columns of the data source:

Type: <SPAN DATASRC=#elem_list
 DATAFLD=”Type”>

Price: <SPAN DATASRC=#elem_list
 DATAFLD=”Price”>

Features: <SPAN DATASRC=#elem_list
 DATAFLD=”Features”>

Navigating through the Product View
Because only one product is shown at a time in the product view, you will want a method of
moving throughout the products in this view.

Use a straightforward method of navigating that uses two buttons, “Prev Item” and “Next
Item,” to move to the previous and next items respectively. Begin by defining the two buttons.
The “Prev Item” button will call the prev() function and the “Next Item” button will call the
next() function:

<INPUT TYPE=BUTTON VALUE=”Prev Item” onclick=”prev()”>
<INPUT TYPE=BUTTON VALUE=”Next Item” onclick=”next()”>

Then, you need to define the next() function. The first thing to be aware of when working with
Data Source Objects a record at a time is the concept of a recordset. This recordset contains the
information representing the current state of the Data Source Object.

For instance, the recordset contains the number of records contained in this Data Source Ob-
ject at this time. Note that the number of records is not necessarily the number of records that
were originally loaded because the current number of records can be modified by setting filters
on your data.

The first thing you need to do in the next() function is get the recordset for the Tabular Data
Control Data Source Object. Each Data Source Object has a recordset property that contains
the recordset. Set this property to the variable “rs”:

function next() {
 var rs = elem_list.recordset;

 ... The rest of the next() function

}

Now you want to move to the next record in the Tabular Data Control; however, first you want
to check to make sure that you are not at the end of the available records.

395

18

VI
Part

Ch

Check this by making sure the current position (represented by the AbsolutePosition property
of the recordset) is not equal to the last position (represented by the RecordCount property of
the recordset).

If you are not at the end of the records, you will use the MoveNext() method of the recordset to
move to the next record. If you are at the last record, however, an alert box will be generated
informing the user of this occurrence:

if (rs.AbsolutePosition != rs.RecordCount)
 rs.MoveNext()
 else
 alert(“At the End”)

You want to follow a similar process with the prev() function. You will move to the previous
record (with the MovePrevious() method of the recordset) unless you are at the first position.
Positions in recordsets start at 1, so you just need to make sure the current AbsolutePosition is
not 1 before you call MovePrevious():

function prev() {
 var rs = elem_list.recordset;
 if (rs.AbsolutePosition != 1)
 rs.MovePrevious()
 else
 alert(“At the beginning”)
}

The Final Page!
Now you have finished the catalog, meeting all the specifications supplied by Burnham Broth-
ers. Listing 18.3 shows the final version of the code for the online catalog with data sorting and
detailed information capabilities (save this file as “catalog.htm”):

Listing 18.3 The Final Burnham Brothers Online Catalog

001. <HTML>
002. <HEAD>
003. <TITLE>Catalog</TITLE>
004. </HEAD>
005. <BODY>
006.
007. <SCRIPT LANGUAGE=JavaScript>
008. function product_onclick() {
009. elem_list.SortColumn = “Product”
010. elem_list.Reset()
011. }
012.
013. function type_onclick() {
014. elem_list.SortColumn = “Type”
015. elem_list.Reset()
016. }
017.

continues

The Final Page!

396 Chapter 18 Building an Online Catalog

http://www.quecorp.com

018. function price_onclick() {
019. elem_list.SortColumn = “Price”
020. elem_list.Reset()
021. }
022.
023.
024. function ftype_onchange() {
025. elem_list.FilterColumn = “Type”
026. if (Type.selectedIndex == 0) {
027. elem_list.FilterCriterion = “<>”
028. elem_list.FilterValue = “no value”
029. } else if (Type.selectedIndex == 1) {
030. elem_list.FilterCriterion = “=”
031. elem_list.FilterValue = “horn”
032. } else if (Type.selectedIndex == 2) {
033. elem_list.FilterCriterion = “=”
034. elem_list.FilterValue = “string”
035. } else {
036. elem_list.FilterCriterion = “=”
037. elem_list.FilterValue = “percussion”
038. }
039.
040. elem_list.Reset()
041. }
042.
043. function max_onchange() {
044. elem_list.FilterColumn=”Price”
045. elem_list.FilterCriterion=”<“
046. elem_list.FilterValue=Max.value;
047.
048. elem_list.Reset()
049. }
050.
051. function showTable() {
052. Table_View.style.display=””;
053. Curr_View.style.display=”none”;
054. }
055.
056. function showCurr() {
057. Table_View.style.display=”none”;
058. Curr_View.style.display=””;
059. }
060.
061. function next() {
062. var rs = elem_list.recordset;
063. if (rs.AbsolutePosition != rs.RecordCount)
064. rs.MoveNext()
065. else
066. alert(“At the End”)
067. }
068.
069. function prev() {
070. var rs = elem_list.recordset;

Listing 18.3 Continued

397

18

VI
Part

Ch

071. if (rs.AbsolutePosition != 1)
072. rs.MovePrevious()
073. else
074. alert(“At the beginning”)
075. }
076.
077.
078. </SCRIPT>
079.
080. <H1>Burnham Brothers</H1>
081. <H2>Product Catalog</H2>
082. <INPUT TYPE=BUTTON VALUE=”Table View” onclick=”showTable()”>
083. <INPUT TYPE=BUTTON VALUE=”Item View” onclick=”showCurr()”>
084.

085.
086. <OBJECT id=elem_list CLASSID=”clsid:333C7BC4-460F-11D0-BC04-0080C7055A83">
087. <PARAM NAME=”DataURL” VALUE=”items.txt”>
088. <PARAM NAME=”UseHeader” VALUE=”True”>
089. </OBJECT>
090.
091. <LABEL FOR=Type>Type: </LABEL>
092.
093. <SELECT id=Type onchange=”ftype_onchange()”>
094. <OPTION SELECTED>ALL
095. <OPTION>Horn
096. <OPTION>String
097. <OPTION>Percussion
098. </SELECT>
099.
100. <LABEL FOR=Max>Maximum Price: </LABEL>
101.
102. <INPUT id=Max TYPE=TEXT value=”” STYLE=”width:50">
103.
104. <INPUT TYPE=BUTTON id=Go value=”Set” onclick=”max_onchange()”>
105. <HR>
106.
107. <DIV id=”Table_View”>
108. <TABLE id=elemtbl datasrc=#elem_list>
109. <THEAD><TR>
110. <TD WIDTH=150><DIV ID=product onclick=”product_onclick()”>
111. <U>
112. Product</U></DIV></TD>
113. <TD WIDTH=150><DIV ID=type onclick=”type_onclick()”>
114. <U>
115. Type</U></DIV></TD>
116. <TD WIDTH=150><DIV ID=price onclick=”price_onclick()”>
117. <U>
118. Price</U></DIV></TD>
119. </TR></THEAD>
120. <TBODY>
121. <TR>
122. <TD></TD>
123. <TD></TD>
124. <TD></TD>
125. </TR>

continues

The Final Page!

398 Chapter 18 Building an Online Catalog

http://www.quecorp.com

126. </TBODY>
127. </TABLE>
128. </DIV>
129.
130. <DIV id=”Curr_View” STYLE=”display:none”>
131.
132. <DIV DATASRC=#elem_list DATAFLD=”Image” DATAFORMATAS=”html”></DIV>

133. Product:
➥

134. Type:
➥

135. Price:
➥

136. Features:
➥

137.

138.
139. <INPUT TYPE=BUTTON VALUE=”Prev Item” onclick=”prev()”>
140. <INPUT TYPE=BUTTON VALUE=”Next Item” onclick=”next()”>
141. </DIV>
142. </BODY></HTML>

The result of reviewing a specific product in the current product view is shown in figure 18.5.

Listing 18.3 Continued

FIG. 18.5
Viewing product
information from the
final Burnham Brothers
online catalog.

399

18

VI
Part

Ch

From Here…
This chapter demonstrated how to build an online catalog from the ground up. All the basic
requirements are there, but you might want to try adding new features to the catalog for expe-
rience. Here are a few ideas to try adding to the catalog application:

■ The capability to select an item in the table view and bring it up in the product view.

■ Building a “shopping basket” that enables the user to make selections from the catalog.

■ Adding more sophisticated filters to the catalog. You could, for instance, let the user set a
minimum price for an item.

This chapter demonstrated the sophisticated kinds of applications you can create with surpris-
ingly little code with Dynamic HTML. You can use this as a launchpad to create your own
interesting and useful Dynamic HTML data binding applications.

Now that you’ve created a practical real-world application in Dynamic HTML, it’s time to have a
little fun. Chapter 19, “Building the Smashout Video Game,” builds a video game in Dynamic
HTML from the ground up with very little code. The video game features how to use event
handling, absolute positioning, and collision detection with Dynamic HTML.

From Here…

400 Chapter 18 Building an Online Catalog

http://www.quecorp.com

401

19

VI
Part

Ch

P

19C H A P T E R

Designing

Learn the process that goes into
designing a video game.

The Arena

Explore the steps necessary to build
the arena in which the game will
take place.

Animating

Learn how to start the game in
motion through animation.

Keeping Track

Explore how to keep track of differ-
ent aspects of the game, such as the
number of lives the player has left.

Building the Smashout
Video Game

rogramming video games is one of the most challenging
projects you can attempt in the field of programming. It
requires not only keeping track of the state of what’s
going on, but strict attention to timing and movement.

In short, programming a video game is just about the last
thing you’d expect to be able to do with only HTML and
JavaScript; however, that’s exactly what you’re going to do
in this chapter.

Over the course of this chapter, you will develop a video
game called Smashout. Smashout is a relatively straight-
forward game that involves bouncing a ball off a paddle
while trying to hit targets, without letting the ball escape
off the bottom of the screen.

Although video game programming can become quite
involved and complicated, the concepts and code in this
chapter are kept as simple as possible to make them un-
derstandable. In fact, the entire Smashout game requires
less than two pages of code! ■

402 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

The Rules of the Game
The Smashout game takes place in a rectangular arena. Inside this arena are three classes of
objects:

■ The Player—The player is represented by a paddle 60 pixels wide and 15 pixels tall (see
fig. 19.1) placed near the bottom of the arena. This paddle can be moved left and right to
the edges of the arena.

FIG. 19.1
The player as repre-
sented by a paddle.

■ The Targets—Sixteen rectangular targets (see fig. 19.2) are placed at the top of the
screen. These targets are 75 pixels wide and 15 pixels tall. These targets disappear when
hit by the ball.

FIG. 19.2
The target.

■ The Ball—The ball is placed in the center of the arena (see fig. 19.3). The ball is 13
pixels wide and 12 pixels tall. When the game starts, the ball begins moving toward the
top of the screen.

FIG. 19.3
The ball.

403

19

VI
Part

Ch

The objective of the game is to destroy all 16 targets at the top of the screen without letting the
ball escape off the bottom of the arena. The ball is kept from escaping by the player hitting the
ball with the paddle, keeping it in play.

The player is given three “lives” in which to destroy all 16 targets. Whenever the ball escapes
off the bottom of the screen, the player loses a life. When all three lives are lost, the game is
over.

If the player manages to hit all 16 targets before losing all three lives, however, the player wins
the game. If the player wants to play again, hitting the Start button regenerates all 16 targets,
and play begins again.

Challenges of Video Game Programming
Several challenges come up in video game programming that you need to consider:

■ Timing—The first and most important aspect of video game programming is timing. For
the user to feel as if the experience is a natural and fluid one, all animation and user
interaction has to appear as if it were happening in real time. The ball must appear to be
moving, for instance, and when it strikes a target, that target must immediately disap-
pear.

■ Monitoring Game State—The second aspect of video game programming to keep in
mind is that the state of the game must be monitored exactly. It would be disconcerting if
two balls were to appear on the screen or if targets randomly disappeared and reap-
peared.

■ Game Speed—Finally, you need to consider the speed of the game. If at all possible, the
speed of the game should be the same on all computers. If this is not possible, the
program should be tested on as many computers as possible, and you should settle on a
compromise speed.

All these aspects will come up during the development of Smashout. Although none of them
are insurmountable, they do point out why game programming can be one of the harder pro-
gramming disciplines to master.

Building the Arena
You will begin by building the arena itself and placing the game objects inside of it. All the
components in the game will be images represented by IMG elements.

You have already covered the target, ball, and player objects. Now you need to consider the
other objects present in the game:

■ Left wall

■ Right wall

■ Top wall

■ Bottom wall

Building the Arena

404 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

The Left and Right walls are represented by side.gif (see fig. 19.4). The Top and Bottom walls
are represented by top.gif (see fig. 19.5). All the walls will be ten pixels thick.

FIG. 19.4
The Side wall.

FIG. 19.5
The Top wall.

Positioning Game Objects
Now that you’ve got the object images that you will be using in the game, you need to decide
where to place these images. You want to build an arena that is 400 pixels wide and 450 pixels
tall and place it 10 pixels from the top and 10 pixels from the right side of the screen, so the
arena is slightly inset from the left and top sides of the browser.

Positioning the Top, Left, Right, and Bottom Sides Begin by placing the top side of the
arena at the 10 left and 10 top position. This insets the arena 10 pixels into the browser. Assign
the ID “top” to the top object:

<IMG ID=top SRC=”top.gif”
 STYLE=”position:absolute;top:10;left:10">

405

19

VI
Part

Ch

Next, you need to place the bottom side of the arena, which uses the same GIF as the top ob-
ject. Because you want the arena to be 450 pixels tall, you will place this GIF 460 pixels from
the top. The GIF is placed at 460 pixels rather than 450 pixels to take into account the 10 pixels
that make up the top part of the arena.

<IMG ID=bottom SRC=”top.gif”
 STYLE=”position:absolute;top:460;left:10">

Now you will start placing the side. First, you will place the left side of the arena 10 pixels from
the left side of the screen to inset it. You will also want to place the left side of the arena 20
pixels from the top of the screen to adjust for the width of the top:

<IMG ID=left SRC=”side.gif”
 STYLE=”position:absolute;top:20;left:10">

Perform a similar placement with the right side of the arena, which should be 20 pixels from
the top of the screen and 400 pixels from the left side of the screen:

<IMG ID=right SRC=”side.gif”
 STYLE=”position:absolute;top:20;left:400">

Positioning the Targets Now that you have built the arena, you can place the targets for
which the player will be aiming. You need to create four rows of four targets, for which you will
use the “bar.gif ” image. Each target will be 75 pixels wide and 15 pixels high. Begin by placing
the targets 40 pixels down from the top of the screen.

You will be creating 16 separate IMG elements, one for each target. Each target will have an ID
starting with “bar” and ending with the number of the target—the first target will be “bar1” and
the last will be “bar16.”

To position the first target, place it 40 pixels from the top of the screen. You will want to fit four
of these targets horizontally across the screen, so place the first target near the left side of the
arena at the horizontal position of 35:

<IMG id=bar1 SRC=”bar.gif”
 STYLE=”position:absolute;top:40;left:35">

To position the second target, place it 90 pixels to the right of the first target to provide some
space between targets:

<IMG id=bar2 SRC=”bar.gif”
 STYLE=”position:absolute;top:40;left:125">

Positioning the third target involves the same process, adding 90 pixels to the right position of
the second target:

<IMG id=bar3 SRC=”bar.gif”
 STYLE=”position:absolute;top:40;left:215">

Finally, apply this same logic to the fourth target, placing it 90 pixels to the right of the third
target.

<IMG id=bar4 SRC=”bar.gif”
 STYLE=”position:absolute;top:40;left:305">

Building the Arena

406 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

Apply this same process to the second, third, and fourth rows of targets. The second row is
placed 70 pixels from the top, the third row 100 pixels from the top, and the fourth row 130
pixels from the top. The actual code for the second, third, and fourth rows is shown in the
following section, “The Smashout Game Foundation.” The first target on the second row, for
example, would be placed with the following code:

<IMG id=bar5 SRC=”bar.gif”
 STYLE=”position:absolute;top:70;left:35">

Positioning the Player The next step in building the arena components is to place the player
paddle on the screen. You will want to place the paddle near the bottom of the arena. It also
makes sense to place the default position of the player paddle halfway into the arena on the
horizontal axis:

<IMG id=player
 SRC=”player.gif” STYLE=”position:absolute;top:410;left:210">

Positioning the Ball Finally, you need to place the image for the ball the player will be trying
to hit. Place it about halfway between the player paddle and the targets and halfway across the
horizontal axis of the arena. Assign the ball a z-index of –1 to make sure that it always shows up
behind other objects in the game:

<IMG id=ball SRC=”ball.gif”
 STYLE=”position:absolute;z-index:–1;top:235;left:210">
</DIV>

The Smashout Game Foundation
At this point, you have constructed the entire arena and placed all the visual components that
make up the game. Now is a good time to stop and take a look at what you have accomplished
so far. Save the following file as “smashout1.htm”:

Listing 19.1 Building the Arena

01. <HTML>
02. <HEAD>
03. <TITLE>Smashout</TITLE>
04.
05. <BODY>
06.
07. <DIV>
08. <IMG id=top SRC=”top.gif”
09. STYLE=”position:absolute;top:10;left:10">
10. <IMG id=bottom SRC=”top.gif”
11. STYLE=”position:absolute;top:460;left:10">
12. <IMG id=left SRC=”side.gif”
13. STYLE=”position:absolute;top:20;left:10">
14. <IMG id=right SRC=”side.gif”
15. STYLE=”position:absolute;top:20;left:400">
16.

407

19

VI
Part

Ch

17. <IMG id=bar1 SRC=”bar.gif”
18. STYLE=”position:absolute;top:40;left:35">
19. <IMG id=bar2 SRC=”bar.gif”
20. STYLE=”position:absolute;top:40;left:125">
21. <IMG id=bar3 SRC=”bar.gif”
22. STYLE=”position:absolute;top:40;left:215">
23. <IMG id=bar4 SRC=”bar.gif”
24. STYLE=”position:absolute;top:40;left:305">
25.
26. <IMG id=bar5 SRC=”bar.gif”
27. STYLE=”position:absolute;top:70;left:35">
28. <IMG id=bar6 SRC=”bar.gif”
29. STYLE=”position:absolute;top:70;left:125">
30. <IMG id=bar7 SRC=”bar.gif”
31. STYLE=”position:absolute;top:70;left:215">
32. <IMG id=bar8 SRC=”bar.gif”
33. STYLE=”position:absolute;top:70;left:305">
34.
35. <IMG id=bar9 SRC=”bar.gif”
36. STYLE=”position:absolute;top:100;left:35">
37. <IMG id=bar10 SRC=”bar.gif”
38. STYLE=”position:absolute;top:100;left:125">
39. <IMG id=bar11 SRC=”bar.gif”
40. STYLE=”position:absolute;top:100;left:215">
41. <IMG id=bar12 SRC=”bar.gif”
42. STYLE=”position:absolute;top:100;left:305">
43.
44. <IMG id=bar13 SRC=”bar.gif”
45. STYLE=”position:absolute;top:130;left:35">
46. <IMG id=bar14 SRC=”bar.gif”
47. STYLE=”position:absolute;top:130;left:125">
48. <IMG id=bar15 SRC=”bar.gif”
49. STYLE=”position:absolute;top:130;left:215">
50. <IMG id=bar16 SRC=”bar.gif”
51. STYLE=”position:absolute;top:130;left:305">
52.
53.
54. <IMG id=player
55. SRC=”player.gif” STYLE=”position:absolute;top:410;left:210">
56.
57. <IMG id=ball SRC=”ball.gif” STYLE=”position:absolute;z-index:
➥–1;top:235;left:210">
58. </DIV>
59.
60. </BODY>
61. </HTML>

Figure 19.6 shows the output from smashout1.htm. Although you haven’t yet started any ani-
mation or logic for the game, you now know exactly what the game is going to look like, and
you can see all the core components that make it up.

Building the Arena

408 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

Animating the Smashout Game
Now that you have built the arena and added the player paddle, targets, and ball, it’s time to
start making the game interactive. You will begin by enabling the user to interact with the
player paddle.

Animating the Player Paddle with Mouse Events
To move the paddle whenever the player moves the mouse, you need to incorporate mouse
events. To do this, you need to capture mouse events over the entire arena. What is the one
element that surrounds the entire arena? The BODY element.

You want the player paddle to move whenever the mouse moves, so you need to capture the
onmousemove event from the BODY element. You want several things to occur when the
mouse is moved, so you need to abstract the code for these actions into a function called
movePlayer():

<BODY onmousemove=”movePlayer()”>

Now you need to write the movePlayer() function. You want the paddle to follow the mouse, but
you only want it to follow the mouse along the X axis because the paddle should only move
horizontally. To accomplish this, you need to retrieve the X position of the mouse when it
moves. This position is available from the x property of the window.event object available inside
the event handler:

FIG. 19.6
The Smashout game
arena.

409

19

VI
Part

Ch

function movePlayer() {
 var xpos = window.event.x;
 ... The rest of the movePlayer() function ...
}

The next thing you need to do is move the player paddle to the X position to where the mouse
moves. You can accomplish this by setting the player.style.posLeft position to the xpos position
you receive from the window.event object.

You cannot blindly set the X position of the player paddle, however. Why is this? Because
you’re getting the mouse events from the BODY element, which reports mouse movement
across the entire body of the browser window. If you placed the paddle to whatever position is
received, the player paddle would move outside of the boundary of the arena.

To prevent this from happening, you want to check first to make sure that the X position you
will use to set the player paddle positioning is inside the boundary of the arena:

 if ((xpos >= 20) && (xpos <= 350))
 player.style.posLeft = xpos;

Starting the Game
Because the game will involve animation that the user must respond to, a mechanism is needed
for the user to start the game. Without this functionality, the user would be caught off guard
because the game would start without player involvement.

To the right of the arena, create a “Start Game” button that actually starts the game. By press-
ing this button, the user calls the initialize() function that starts the code that sets the game in
motion:

<INPUT TYPE=BUTTON VALUE=”Start Game” STYLE=”position:absolute;top:10;left:450"
 onclick=”initialize()”>

The next step is to write the initialize function. The first thing you will want to do is make sure
that the ball is in the correct starting position:

function initialize() {

 ball.style.posTop = 235;
 ball.style.posLeft = 210;

}

Next, you need to start the ball in motion. Abstract this functionality into a function called
moveBall() (this function is defined in the next section):

moveBall();

Getting the Ball Moving
Unlike the movement of the player paddle, the movement of the ball must be controlled en-
tirely by the scripts that make up the Smashout program. You need to pay careful attention to
several aspects of the movement of the ball, including:

Animating the Smashout Game

410 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

■ Keeping track of the speed and direction of the ball

■ Changing the position of the ball to give the illusion of movement

■ Having a mechanism that enables the animation of the ball to occur at regularly sched-
uled intervals, making the animation smooth

First you need a mechanism for keeping track of the speed and direction of the ball. The move-
ment of the ball occurs in two dimensions, so whenever the ball moves, it moves a certain
amount in the X direction and a certain amount in the Y direction. Create variables called “dx”
and “dy” to hold the amount that the ball moves each time the moveBall() function is called:

var dx;
var dy;

A positive “dx” means that the ball is moving to the right, and a negative “dx” means it is mov-
ing to the left. In much the same way, a positive “dy” means that the ball is moving downward,
and a negative “dy” means that the ball is moving upward.

Whenever a user starts the game, you want the ball to start moving up and to the left to give
the player some time to get ready before the ball starts coming. In addition, you want the ball
to move only a few pixels at a time to give the illusion of smooth movement. Therefore, you
need to set the “dx” value to –4, causing the ball to move slowly to the left, and the “dy” value
to –4, causing the ball to move slowly upward.

Because you want these movement values at the beginning of the game, you need to place
them in the initialize() function:

function initialize() {

 ...

 dx = –4;
 dy = –4;

}

Now you’re ready to start writing the moveBall() function. The main purpose of this function is
to move the ball, so start the function by adding the “dy” value to the posTop property of the
ball, and the “dx” value to the posLeft property of the ball:

function moveBall() {

 ball.style.posTop += dy;
 ball.style.posLeft += dx;

}

Now, whenever the moveBall() function is called, the ball moves slightly in the direction speci-
fied by “dx” and “dy.” Note that as the code currently stands, however, the moveBall() function
is called only once.

411

19

VI
Part

Ch

You could call the moveBall() function again inside of the moveBall() function itself and this
would cause the ball to animate; however, you would have absolutely no control over how often
the ball is moved. On a fast machine, the ball would move so quickly you would never see it.

Fortunately, JavaScript provides an alternative in the setTimeout() method of the window ob-
ject. The setTimeout() method takes three arguments:

■ The function to be called

■ The amount of time in milliseconds to wait before calling it

■ The language in which the function is written

In this case, you want the moveBall() function to be called. The amount of time to wait is a little
trickier. Testing has shown that the amount of time to wait in setTimeout() to get smooth ani-
mation is somewhere between 5 and 20 milliseconds.

For this game, select a value midway between this range—13 milliseconds. If you want to
speed up the game, lower this value. Conversely, if you want to slow it down, raise the value.

Finally, you want to set the name of the language that the moveBall() function is written in to
“JavaScript” because that is the scripting language used in the Smashout example. Place this
call to setTimeout() at the end of the moveBall() function:

window.setTimeout(“moveBall()”, 13, “JavaScript”);

Checking to See if the Ball Hit a Wall
Now you’ve got the ball moving, but unfortunately, nothing stops it from moving. If you exe-
cuted the code as it stands right now, the ball would just drift off the upper-left side of the arena
and move off the edge of the browser.

To prevent this from happening, you need to have some type of process to make sure the ball is
kept in the arena. You can do this by adding code to the moveBall() function before the posi-
tion of the ball is updated.

The first set of circumstances you need to watch out for involves the ball hitting the edges of
the arena. You need to check for four occurrences:

■ The ball hitting the left side of the arena

■ The ball hitting the right side of the arena

■ The ball hitting the top of the arena

■ The ball hitting the bottom of the arena

To check for these occurrences, you need to have the current X and Y positions of the ball.
Create local variables in the moveBall() function to retrieve this data:

var xp = ball.style.posLeft;
var yp = ball.style.posTop;

First, check to see if the ball has hit the left or right side of the screen. In either case, you want
to reverse the X direction of the ball. If this doesn’t make sense to you, think about it for a
moment.

Animating the Smashout Game

412 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

If the ball is traveling to the right and hits the right wall, it then starts moving to the left. Con-
versely, if the ball travels to the left and hits the left wall, you want it to start traveling to the
right. If the ball is to the left of the X position of 20, it has hit the left wall; if it is to the right of
the X position of 392, it has hit the right wall, as dictated by the following lines of code:

 if ((xp < 20) || (xp > 392)) {
 dx = –dx;
 }

For the second check you will want to see if the ball has hit the top of the screen. You can ac-
complish this by seeing if the ball’s Y position is less than 10. If the ball hits the top of the
screen, you will want to reverse its Y direction:

else if (yp < 10) {
 dy = –dy;
 }

Finally, if the ball hits the bottom of the screen, the player loses a life. You will add the logic for
keeping track of lives in the next part of the chapter; so for now, you will stop the animation by
returning from the function, and making sure that the moveBall() function doesn’t call the
setTimeout() method again.

else if (yp > 450) {
 return;
 }

Checking to See if the Ball Hit the Paddle or a Target
At this point, the ball can bounce around the inside of the arena until it hits the bottom of the
arena, at which point it stops. The next step is to check to see if the ball has hit an object inside
the arena.

You need to check two objects to see if the ball has hit them:

■ The player paddle

■ A target

The process of checking if a moving object has collided with another object is called collision
detection, and it can be one of the trickier aspects of game programming. You can use various
algorithms to check if two objects are intersecting, but they can get quite complicated. In fact,
if you had to do collision detection by hand, programming the Smashout game would be be-
yond the scope of this book.

Luckily, Dynamic HTML comes to the rescue here with a method contained in the document
object called elementFromPoint(). This method enables you to find out which HTML element is
present at any given point. By using the X and Y positions of the ball as arguments to the
elementFromPoint() method, you can then find out with what element the ball is intersecting.

At this time, you may be thinking that the element residing at the point where the ball is lo-
cated is the ball itself. Remember, however, that you set the z-index of the ball to –1, making
sure it is behind all other elements. Therefore, the element returned by elementFromPoint()

413

19

VI
Part

Ch

will be the element with which the ball collides. You will use the “xp” and “yp” variables that
you have already defined in the moveBall() function to pass to the elementFromPoint()
method:

var hit = document.elementFromPoint(xp,yp);

First, you want to check to make sure that an element was returned into the “hit” variable. You
can check this by seeing if the contents of “hit” are null:

if (hit != null) {

Next, you will want to do the next check, which is to see if the player paddle was hit. If the ID
of the element the ball has hit is the player paddle, the Y direction of the ball is reversed:

 if (hit.id == “player”) {
 dy = –dy;
 }

Next, you want to check to see if the ball hit one of the targets. The most straightforward
method of checking this is to see if the ID of the element the ball has hit is one of the target
IDs. This method, however, has one big disadvantage: checking all 16 IDs would be relatively
slow, and it’s important to keep the amount of code in the moveBall() function as small as
possible because it will be repeated many times a second.

Instead, you can do something a bit trickier. The ID is not the only aspect of the target that is
different from all the other elements in the arena. The target is the only element on the page
that is 75 pixels wide. Therefore, you can check to see if the width of the element hit is 75
pixels. If it is, you know that a target has been hit.

If a target has been hit, you want to do two things. First, the target should be removed from the
screen by setting its display attribute to “none.” Second, the Y direction of the ball should be
reversed:

else if (hit.width == 75) {
 hit.style.display = “none”;
 dy = –dy;
 }

The Foundation for Animating the Smashout Game
At this point, you have enough code that the game is actually playable. Save the following code
as “smashout2.htm”:

Listing 19.2 Animating the Smashout Game

001. <HTML>
002. <HEAD>
003. <TITLE>Smashout</TITLE>
004.
005. <SCRIPT LANGUAGE=”JavaScript”>
006. var dx;
007. var dy;

continues

Animating the Smashout Game

414 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

008.
009. function initialize() {
010.
011. dx = –4;
012. dy = –4;
013. ball.style.posTop = 235;
014. ball.style.posLeft = 210;
015. moveBall();
016.
017. }
018.
019. function moveBall() {
020. var xp = ball.style.posLeft;
021. var yp = ball.style.posTop;
022. var hit = document.elementFromPoint(xp,yp);
023.
024. if ((xp < 20) || (xp > 392)) {
025. dx = –dx;
026. } else if (yp < 10) {
027. dy = –dy;
028. } else if (yp > 450) {
029. return;
030. }
031.
032. if (hit != null) {
033. if (hit.id == “player”) {
034. dy = –dy;
035. } else if (hit.width == 75) {
036. hit.style.display = “none”;
037. dy = –dy;
038. }
039. }
040.
041. ball.style.posTop += dy;
042. ball.style.posLeft += dx;
043.
044. window.setTimeout(“moveBall()”, 13, “JavaScript”);
045. }
046.
047. function movePlayer() {
048. var xpos = window.event.x;
049. if ((xpos >= 20) && (xpos <= 350))
050. player.style.posLeft = xpos;
051. }
052.
053. </SCRIPT>
054. </HEAD>
055. <BODY onmousemove=”movePlayer()”>
056.
057. <DIV>
058. <IMG id=top SRC=”top.gif”
059. STYLE=”position:absolute;top:10;left:10">
060. <IMG id=bottom SRC=”top.gif”

Listing 19.2 Continued

415

19

VI
Part

Ch

061. STYLE=”position:absolute;top:460;left:10">
062. <IMG id=left SRC=”side.gif”
063. STYLE=”position:absolute;top:20;left:10">
064. <IMG id=right SRC=”side.gif”
065. STYLE=”position:absolute;top:20;left:400">
066.
067. <IMG id=bar1 SRC=”bar.gif”
068. STYLE=”position:absolute;top:40;left:35">
069. <IMG id=bar2 SRC=”bar.gif”
070. STYLE=”position:absolute;top:40;left:125">
071. <IMG id=bar3 SRC=”bar.gif”
072. STYLE=”position:absolute;top:40;left:215">
073. <IMG id=bar4 SRC=”bar.gif”
074. STYLE=”position:absolute;top:40;left:305">
075.
076. <IMG id=bar5 SRC=”bar.gif”
077. STYLE=”position:absolute;top:70;left:35">
078. <IMG id=bar6 SRC=”bar.gif”
079. STYLE=”position:absolute;top:70;left:125">
080. <IMG id=bar7 SRC=”bar.gif”
081. STYLE=”position:absolute;top:70;left:215">
082. <IMG id=bar8 SRC=”bar.gif”
083. STYLE=”position:absolute;top:70;left:305">
084.
085. <IMG id=bar9 SRC=”bar.gif”
086. STYLE=”position:absolute;top:100;left:35">
087. <IMG id=bar10 SRC=”bar.gif”
088. STYLE=”position:absolute;top:100;left:125">
089. <IMG id=bar11 SRC=”bar.gif”
090. STYLE=”position:absolute;top:100;left:215">
091. <IMG id=bar12 SRC=”bar.gif”
092. STYLE=”position:absolute;top:100;left:305">
093.
094. <IMG id=bar13 SRC=”bar.gif”
095. STYLE=”position:absolute;top:130;left:35">
096. <IMG id=bar14 SRC=”bar.gif”
097. STYLE=”position:absolute;top:130;left:125">
098. <IMG id=bar15 SRC=”bar.gif”
099. STYLE=”position:absolute;top:130;left:215">
100. <IMG id=bar16 SRC=”bar.gif”
101. STYLE=”position:absolute;top:130;left:305">
102.
103.
104. <IMG id=player
105. SRC=”player.gif” STYLE=”position:absolute;top:410;left:210">
106.
107. <IMG id=ball SRC=”ball.gif” STYLE=”position:absolute;z-index:
 ➥–1;top:235;left:210">
108. </DIV>
109.
110. <INPUT TYPE=BUTTON VALUE=”Start Game”
➥STYLE=”position:absolute;top:10;left:450"
111. onclick=”initialize()”>
112.
113. </BODY>
114. </HTML>

Animating the Smashout Game

416 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

Try playing the game for a while. Start the game by pressing the Start Game button. Most of
the mechanics for the game are present, but notice what happens when the ball hits the bottom
of the screen—the game stops (see fig. 19.7). You will add the logic to take care of this type of
occurrence in the next section of the chapter.

FIG. 19.7
Smashout stops when
the ball hits the bottom
of the arena.

Adding Game Logic
Now that you’ve got the basic functionality of the game implemented, you need to add more
logic to the game to tell the program what to do in the following circumstances:

■ When the player loses a life

■ When the player wins the game

Losing a Life and Possibly the Game
For convention’s sake, the player will start with 3 lives. To keep track of the number of player
lives, you will use a global variable in the script called “lives”:

var lives;

Next, you want the player to know how many lives they have at any given time. Therefore, you
need to place a SPAN of text listing the number of lives to the right of the arena. This span will
be given the ID of “show_lives” so you’ll be able to change it dynamically:

➥Lives:

417

19

VI
Part

Ch

When will you want to set the number of lives that the player has? Whenever the player starts
the game. The game started by calling the initialize() function, so you will set the value of lives
to 3 there:

lives = 3;

You will want to let the player know he has 3 lives at the beginning of the game, so you need to
set the innerHTML property of the show_lives element to “Lives: 3” in the initialize() function
as well. This is done by appending the number of lives to the “Lives: ” string with the ‘+’ opera-
tor:

show_lives.innerHTML = “Lives: “ + lives;

Now, how does the player lose a life? Whenever the ball hits the bottom of the arena. To add
this functionality, have the moveBall() function call a function called loseLife() whenever the
ball drifts off the bottom of the arena:

 if (yp > 450) {
 loseLife(); // Call loseLife()
 return;
 }

Now you need to define the loseLife() function. The first thing you need to do is reduce the
“lives” variable by 1. Next, you will want to update the “Lives” indicator:

function loseLife() {

 lives––;
 show_lives.innerHTML = “Lives: “ + lives;

}

Now the player starts with a new life. What needs to be done? First, reset the position of the
ball to its original starting place as follows:

ball.style.posTop = 235;
ball.style.posLeft = 210;

Next, you need to check to see if the player has any lives left. If he does, you will want to start
the ball moving again with a call to the moveBall() function. If the player has exhausted his
lives, however, the game should inform the player that the game is over. The ball should not
start moving again (see fig. 19.8):

 if (lives > 0) {
 moveBall();
 } else {
 alert(“Game Over”);
 }

Adding Game Logic

418 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

Winning the Game
The player wins the game by eliminating all the targets. Therefore, you need to provide a
mechanism that keeps track of the number of targets left in the game. Begin by defining a
global variable called “targets”:

var targets;

Next, in the initialize() function, set the number of targets to 16 because 16 targets are always
used at the beginning of any game:

targets = 16;

Next, you need to subtract 1 from “targets” in the moveBall() function if a target has been hit.
In addition, if no targets remain, a message box should pop up telling the user, “You win!” (see
fig. 19.9):

} else if (hit.width == 75) {

 The rest of the code for hitting a target ...

 targets––;
 if (targets == 0) {
 alert(“You Win!”);
 return;
 }

}

FIG. 19.8
Alerting the player that
the game is over.

419

19

VI
Part

Ch

Finally, when the game is restarted, you need to make sure that all the targets are shown. You
can accomplish this by adding a call to showTargets() inside the initialize() function:

showTargets();

To define the showTargets() function, all you need to do is set the STYLE display property of
each of the targets to “”, which tells the browser to make them visible:

Listing 19.3 Making the Targets Visible Again

01. function showTargets() {
02.
03. bar1.style.display = “”;
04. bar2.style.display = “”;
05. bar3.style.display = “”;
06. bar4.style.display = “”;
07. bar5.style.display = “”;
08. bar6.style.display = “”;
09. bar7.style.display = “”;
10. bar8.style.display = “”;
11. bar9.style.display = “”;
12. bar10.style.display = “”;
13. bar11.style.display = “”;
14. bar12.style.display = “”;
15. bar13.style.display = “”;
16. bar14.style.display = “”;
17. bar15.style.display = “”;
18. bar16.style.display = “”;
19.
20. }

FIG. 19.9
Winning the game.

Adding Game Logic

420 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

The Final Page!
Believe it or not, you’re done programming Smashout! Here’s the final version of the code
(save this file as “smashout.htm”):

Listing 19.4 The Final Code for Smashout

001. <HTML>
002. <HEAD>
003. <TITLE>Smashout</TITLE>
004.
005. <SCRIPT LANGUAGE=”JavaScript”>
006. var targets;
007. var lives;
008. var dx;
009. var dy;
010.
011. function initialize() {
012.
013. targets = 16;
014. lives = 3;
015. dx = –4;
016. dy = –4;
017. showTargets();
018. ball.style.posTop = 235;
019. ball.style.posLeft = 210;
020. show_lives.innerHTML = “Lives: “ + lives;
021. moveBall();
022.
023. }
024.
025. function showTargets() {
026.
027. bar1.style.display = “”;
028. bar2.style.display = “”;
029. bar3.style.display = “”;
030. bar4.style.display = “”;
031. bar5.style.display = “”;
032. bar6.style.display = “”;
033. bar7.style.display = “”;
034. bar8.style.display = “”;
035. bar9.style.display = “”;
036. bar10.style.display = “”;
037. bar11.style.display = “”;
038. bar12.style.display = “”;
039. bar13.style.display = “”;
040. bar14.style.display = “”;
041. bar15.style.display = “”;
042. bar16.style.display = “”;
043.
044. }
045.
046. function moveBall() {
047. var xp = ball.style.posLeft;

421

19

VI
Part

Ch

048. var yp = ball.style.posTop;
049. var hit = document.elementFromPoint(xp,yp);
050.
051. if ((xp < 20) || (xp > 392)) {
052. dx = –dx;
053. } else if (yp < 10) {
054. dy = –dy;
055. } else if (yp > 450) {
056. loseLife();
057. return;
058. }
059.
060. if (hit != null) {
061. if (hit.id == “player”) {
062. dy = –dy;
063. } else if (hit.width == 75) {
064. hit.style.display = “none”;
065. dy = –dy;
066. targets––;
067. if (targets == 0) {
068. alert(“You Win!”);
069. return;
070. }
071. }
072. }
073. ball.style.posTop += dy;
074. ball.style.posLeft += dx;
075.
076. window.setTimeout(“moveBall()”, 13, “JavaScript”);
077. }
078.
079. function loseLife() {
080.
081. lives––;
082. show_lives.innerHTML = “Lives: “ + lives;
083.
084. ball.style.posTop = 235;
085. ball.style.posLeft = 210;
086.
087. if (lives > 0) {
088. moveBall();
089. } else {
090. alert(“Game Over”);
091. }
092. }
093.
094. function movePlayer() {
095. var xpos = window.event.x;
096. if ((xpos >= 20) && (xpos <= 350))
097. player.style.posLeft = xpos;
098. }
099.
100. </SCRIPT>
101. </HEAD>
102. <BODY onmousemove=”movePlayer()”>

continues

The Final Page!

422 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

103.
104. <DIV>
105. <IMG id=top SRC=”top.gif”
106. STYLE=”position:absolute;top:10;left:10">
107. <IMG id=bottom SRC=”top.gif”
108. STYLE=”position:absolute;top:460;left:10">
109. <IMG id=left SRC=”side.gif”
110. STYLE=”position:absolute;top:20;left:10">
111. <IMG id=right SRC=”side.gif”
112. STYLE=”position:absolute;top:20;left:400">
113.
114. <IMG id=bar1 SRC=”bar.gif”
115. STYLE=”position:absolute;top:40;left:35">
116. <IMG id=bar2 SRC=”bar.gif”
117. STYLE=”position:absolute;top:40;left:125">
118. <IMG id=bar3 SRC=”bar.gif”
119. STYLE=”position:absolute;top:40;left:215">
120. <IMG id=bar4 SRC=”bar.gif”
121. STYLE=”position:absolute;top:40;left:305">
122.
123. <IMG id=bar5 SRC=”bar.gif”
124. STYLE=”position:absolute;top:70;left:35">
125. <IMG id=bar6 SRC=”bar.gif”
126. STYLE=”position:absolute;top:70;left:125">
127. <IMG id=bar7 SRC=”bar.gif”
128. STYLE=”position:absolute;top:70;left:215">
129. <IMG id=bar8 SRC=”bar.gif”
130. STYLE=”position:absolute;top:70;left:305">
131.
132. <IMG id=bar9 SRC=”bar.gif”
133. STYLE=”position:absolute;top:100;left:35">
134. <IMG id=bar10 SRC=”bar.gif”
135. STYLE=”position:absolute;top:100;left:125">
136. <IMG id=bar11 SRC=”bar.gif”
137. STYLE=”position:absolute;top:100;left:215">
138. <IMG id=bar12 SRC=”bar.gif”
139. STYLE=”position:absolute;top:100;left:305">
140.
141. <IMG id=bar13 SRC=”bar.gif”
142. STYLE=”position:absolute;top:130;left:35">
143. <IMG id=bar14 SRC=”bar.gif”
144. STYLE=”position:absolute;top:130;left:125">
145. <IMG id=bar15 SRC=”bar.gif”
146. STYLE=”position:absolute;top:130;left:215">
147. <IMG id=bar16 SRC=”bar.gif”
148. STYLE=”position:absolute;top:130;left:305">
149.
150.
151. <IMG id=player
152. SRC=”player.gif” STYLE=”position:absolute;top:410;left:210">
153.
154. <IMG id=ball SRC=”ball.gif” STYLE=”position:absolute;z-index:
➥–1;top:235;left:210">

Listing 19.4 Continued

423

19

VI
Part

Ch

155. </DIV>
156.
157. <INPUT TYPE=BUTTON VALUE=”Start Game”
➥STYLE=”position:absolute;top:10;left:450"
158. onclick=”initialize()”>
159. Lives:
 ➥

160.
161. </BODY>
162. </HTML>

From Here…
This chapter demonstrated how to build a relatively complex video game from the ground up.
All the basic requirements are there, but you might want to try adding new features to the
game for experience. Here are a few ideas to try adding to the Smashout game:

■ Keep track of the number of targets the player has hit during the game through a
scoring algorithm.

■ Increase the speed of the ball every time the player finishes a level.

■ Use an animated GIF for either the ball or some of the targets, which would enhance the
visual appeal of the game.

■ Add special targets that do different things when the player hits them. For instance,
create a target that when hit causes a second ball to appear.

■ Improve the bounce algorithm. In the current game the movement of the ball is predict-
able. Add some randomness to the bouncing of the ball to make its movement more
erratic.

You certainly have come a long way throughout this book. You started by learning the basics of
programming and layout in Dynamic HTML. Along the way you learned many of the important
aspects of Dynamic HTML, such as dynamic style, dynamic content, multimedia, and data
binding.

Hopefully the last few chapters have given you insights into how you can use the Dynamic
HTML concepts you have learned to make your web pages much more appealing, effective,
and interactive. Here’s hoping you’re able to go a long way with Dynamic HTML. A whole new
world is waiting to be explored.

Now that you’ve taken an in-depth look at Dynamic HTML, you probably want to start building
Dynamic HTML programs of your own. Appendix G, “Plug-and-Play Dynamic HTML” will
make this easier by presenting a great deal of code that you can easily cut-and-paste into your
own Dynamic HTML programs.

From Here…

424 Chapter 19 Building the Smashout Video Game

http://www.quecorp.com

VIIP A R T

Appendixes

A HTML Elements and Attributes 427

B CSS and CSS Positioning Attributes 455

C Using VBScript Instead of JavaScript 471

D Scripting Objects, Collections, Methods,
and Properties 485

E Special Edition Using Dynamic HTML Online
Web Site 497

F Browser-Safe Hexadecimal Chart 507

G Dynamic HTML Tips and Utilities 513

H Glossary 549

427

A
App

T

AA P P E N D I X

HTML Elements and
Attributes

here are a number of HTML tags that are used in conjunc-
tion with Dynamic HTML to create interactive pages and
applications. The sections that follow give a complete
rundown of the HTML tags that can be used with Dy-
namic HTML, their functionality, the values they take
(if any), and a brief code example to show how they are
implemented. ■

428 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

<!-- -->
The <!-- and --> are the beginning and closing markers for HTML comments. Comments
are preceded with <!--, which instructs the browser to ignore any text until it reaches the
terminating - ->.

<!-- This is an HTML comment
this tag will be ignored -->

<!DOCTYPE>
The <!DOCTYPE> tag specifies the type of information enclosed in a document, including the
markup language and the version number. Because the HTML specification is constantly being
updated (with version 4.0 now in the works), it’s a good idea to use this tag so that the browser
will always render your pages correctly.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2//EN”>

<A>
The anchor tag, <A>, denotes a hypertext link. It requires the specification of a NAME or
HREF location. The anchor tag accepts the following attributes and values:

ACCESSKEY=key

CLASS=classname

DATAFLD=colname

DATASRC=#ID

HREF=url

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

METHODS=http-method

NAME=name

REL=“stylesheet”

REV=“stylesheet”

STYLE=css1-properties

TARGET=window_name | _blank | _parent | _self | _top

TITLE=text

URL=url

429

A
App

<ADDRESS>
The <ADDRESS> tag specifies the address of a page’s author or party responsible for the
page’s management. Text enclosed in the tag will be italic. The <ADDRESS> tag accepts the
following attributes and values:

CLASS=classname

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

STYLE=css1-properties

TITLE=text

<ADDRESS>dgublran@bluemarble.net</ADDRESS>

<APPLET>
The <APPLET> tag places an executable on a web page. These executables may currently be in
the form of ActiveX or Java applets; however, the tag is not limited to these forms. The
<APPLET> tag accepts the following attributes and values:

ALIGN=ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM | LEFT | MIDDLE |
RIGHT | TEXTTOP | TOP

ALT=text

CLASS=classname

CODE=filename

CODEBASE=url

DATAFLD=colname

DATASRC=#ID

HEIGHT=n

HSPACE=n

ID=value

NAME=name

SRC=url

STYLE=css1-properties

TITLE=text

VSPACE=n

WIDTH=n

<APPLET CODE=”myjava.class”
NAME=”myApplet”

<APPLET>

430 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

 WIDTH=500
 HEIGHT=500>
</APPLET>

<AREA>
The <AREA> tag specifies the shape of a “target” area on a client-side image map.

The <AREA> tag accepts the following attributes and values:

ALT=text

CLASS=classname

COORDS=coordinates

HREF=url

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

NOHREF

SHAPE=CIRC | CIRCLE | POLY | POLYGON | RECT | RECTANGLE

STYLE=css1-properties

TARGET=window_name | _blank | _parent | _self | _top

TITLE=text

<AREA SHAPE=”RECT” COORDS=”0, 0, 75, 125" HREF=”http://www.myserver.com”>

The tag denotes bold text.

This type will be displayed in boldface

<BASE>
The <BASE> tag specifies the base URL for a document. The <BASE> tag accepts the following
attributes and values:

CLASS=classname

HREF=url

ID=value

LANG=language

TARGET=window_name | _blank | _parent | _self | _top

TITLE=text

<BASE HREF=”http://www.myserver.com/thisdoc.html”>

431

A
App

<BASEFONT>
The <BASEFONT> tag specifies a default typeface for rendering a document. The
<BASEFONT> tag accepts the following attributes and values:

CLASS=classname

COLOR=color

FACE=font

ID=value

LANG=language

SIZE=n

TITLE=text

<BASEFONT FACE=”Times” SIZE=3>

<BGSOUND>
The <BGSOUND> tag enables you to specify a background soundtrack for a page. The
<BGSOUND> tag accepts the following attributes and values:

BALANCE=n

CLASS=classname

ID=value

LANG=language

LOOP=n

SRC=url

TITLE=text

VOLUME=n

<BGSOUND SRC=”http://www.myserver.com/mysound.loud”>

<BIG>
The <BIG> tag specifies that the font should be displayed “bigger” in relation to the current
font. The <BIG> tag accepts the following attributes and values:

CLASS=classname

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

STYLE=css1-properties

TITLE=text

If this text is normal, then <BIG>this text is bigger!</BIG>

<BIG>

432 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

<BLOCKQUOTE>
The <BLOCKQUOTE> tag enables you to specify a quotation that will be offset from the regu-
lar text. The <BLOCKQUOTE> tag accepts the following attributes and values:

CLASS=classname

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

STYLE=css1-properties

TITLE=text

Shakespeare didn’t write:

<BLOCKQUOTE>To code or not to code,
That is never a question.</BLOCKQUOTE>

<BODY>
The <BODY> tag specifies the beginning and ending of the main body section of an HTML
document. The <BODY> tag accepts the following attributes and values:

ACCESSKEY=string

ALINK=color

BACKGROUND=url

BGCOLOR=color

BGPROPERTIES=FIXED

BOTTOMMARGIN=pixels

CLASS=classname

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

LEFTMARGIN=pixels

LINK=color

RIGHTMARGIN=pixels

SCROLL=YES | NO

STYLE=css1-properties

TEXT=color

TITLE=string

433

A
App

TOPMARGIN=n

VLINK=color

<HTML>
<BODY BACKGROUND=”mybkgd.gif”>
</BODY>
</HTML>

The
 tag forces a line break.

This is

an abnormal line break.

<BUTTON>
The <BUTTON> tag displays a button on the page with the label specified between the start
and end tags. The <BUTTON> tag accepts the following attributes and values:

ACCESSKEY=string

CLASS=classname

DATAFLD=colname

DATAFORMATAS=HTML | TEXT

DATASRC=#ID

DISABLED

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

STYLE=css1-properties

TITLE=text

TYPE=BUTTON | RESET | SUBMIT

<BUTTON TYPE=”RESET”>Reset me!</BUTTON>

<CAPTION>
The <CAPTION> tag specifies a caption for a TABLE element. The <CAPTION> tag accepts
the following attributes and values:

ALIGN=BOTTOM | CENTER | LEFT | RIGHT | TOP

CLASS=classname

ID=value

<CAPTION>

434 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

STYLE=css1-properties

TITLE=text

VALIGN=BOTTOM | TOP

<TABLE>
<CAPTION VALIGN=BOTTOM>
The table above shows HTML tags.
</CAPTION>
...
</TABLE>

<CENTER>
The <CENTER> tag aligns enclosed text and elements on the center of the page.

<CENTER>This text will be centered.</CENTER>

<CITE>
The <CITE> tag specifies a citation to reference material. The text is displayed italic.

Everyone will be using DHTML soon.
<CITE>Where did you go today?</CITE> By Gil Bates

<CODE>
The <CODE> tag specifies that the enclosed text is a code listing or code fragment. The text is
displayed in a small, fixed-width font.

<CODE>
 myfunction(){
 var foo, bar;
 bar= foo*1;
 alert(“This doesn’t do anything!”);
 }
</CODE>

<COL>
The <COL> tag specifies the column parameters for TABLE elements. The <COL> tag accepts
the following attributes and values:

ALIGN=CENTER | LEFT | RIGHT

CLASS=classname

ID=value

435

A
App

SPAN=n

STYLE=css1-properties

TITLE=text

VALIGN=BASELINE | BOTTOM | MIDDLE | TOP

WIDTH=n

<TABLE>
<COL ALIGN=CENTER>
<TR>
<TD>This is centered</TD>
</TR>
</TABLE>

<COLGROUP>
The <COLGROUP> tag groups together mulitple <COL> definitions. The <COLGROUP> tag
accepts the following attributes and values:

ALIGN=CENTER | LEFT | RIGHT

CLASS=classname

ID=value

SPAN=n

STYLE=css1-properties

TITLE=text

VALIGN=BASELINE

<TABLE>
<COLGROUP SPAN=2 ALIGN=CENTER>
<TR>
<TD>Column One</TD>
<TD>Column Two</TD>
</TR>
</TABLE>

<DD>
The <DD> tag denotes the definition in a definition list. It is usually indented from the defini-
tion list. Refer to the sections on the <DT> and <DL> tags for an HTML code example.

<DFN>
The <DFN> tag marks the first instance of a term’s definition, to be referenced later in the text.

<DFN>DHTML is Dynamic HTML, a variant of HTML</DFN>

<DFN>

436 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

<DIR>
The <DIR> tag denotes a directory listing. Items are specified with the tag.

<DIR>
Item One
Item Two
</DIR>

<DIV>
The <DIV> tag creates container elements that can be treated as a single entity with Dynamic
HTML or CSS. The <DIV> tag accepts the following attributes and values:

ALIGN=CENTER | LEFT | RIGHT

CLASS=classname

DATAFLD=colname

DATAFORMATAS=HTML | TEXT

DATASRC=#ID

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

STYLE=css1-properties

TITLE=text

<DIV id=”Container1" STYLE=”color: red”>
All of the tags.
and text
Within the <PRE>DIV</PRE> tag are

treated as one element.
</DIV>

<DL>
The <DL> tag denotes a definition list, or a list of terms and their accompanying definitions.
The <DL> tag accepts the following attributes and values:

<DL>
<DT>Dynamic HTML
<DD>A mixture of HTML and scripting.
<DT>Microsoft
<DD>One company creating versions of Dynamic HTML
</DL>

437

A
App

<DT>
The <DT> tag denotes a definition term for inclusion in a definition list. Refer to the previous
section on the <DL> tag for an HTML code example featuring the <DT> tag.

The tag specifies emphasis. Most browsers render the emphasis tag in italic.

This will be italicized.

<EMBED>
The <EMBED> tag embeds documents or applications of any type into a web page. If the em-
bedded element requires a separate viewer, the user must have that viewer installed to cor-
rectly view the document. The <EMBED> tag accepts the following attributes and values:

ALIGN=ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM | LEFT | MIDDLE |
RIGHT | TEXTTOP | TOP

ALT=text

CLASS=classname

CODE=filename

CODEBASE=url

HEIGHT=n

HSPACE=n

ID=value

NAME=name

SRC=url

STYLE=css1-properties

TITLE=text

VSPACE=n

WIDTH=n

<EMBED CODE=”myjava.class”
NAME=”myApplet”
 WIDTH=500
 HEIGHT=500
 ALT=”Your browser doesn’t support the EMBED tag”>
</EMBED>

<EMBED>

438 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

The tag specifies font information in a document. The tag accepts the
following attributes and values:

CLASS=classname

COLOR=color

FACE=font

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

SIZE=n

STYLE=css1-properties

TITLE=text

This text is small and red.

<FORM>
The <FORM> tag specifies the information to construct forms on the HTML page. The
<FORM> tag accepts the following attributes and values:

ACTION=url

CLASS=classname

ENCTYPE=encoding

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

METHOD=GET | POST

NAME=name

STYLE=css1-properties

TARGET=window_name | _blank | _parent | _self | _top

TITLE=text

<FORM ACTION=”http://www.myserver.com/find.cgi” METHOD=”POST">
The form definition would appear here.
</FORM>

439

A
App

<FRAME>
The <FRAME> tag defines an individual FRAME element within a FRAMESET. The <FRAME>
tag accepts the following attributes and values:

BORDERCOLOR=color

CLASS=classname

DATAFLD=colname

DATASRC=#ID

FRAMEBORDER=NO | YES | 0 | 1

HEIGHT=n

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

MARGINHEIGHT=pixels

MARGINWIDTH=pixels

NAME=window_name | _blank | _parent | _self | _top

NORESIZE=NORESIZE | RESIZE

SCROLLING=AUTO | NO | YES

SRC=url

TITLE=text

WIDTH=n

<FRAME FRAMEBORDER=2 SRC=”http://www.myserver.com/myframe.html”>

<FRAMESET>
The <FRAMESET> tag specifies information about the number and type of frames in a
document. The <FRAMESET> tag can also be used to create frames within frames. The
<FRAMESET> tag accepts the following attributes and values:

BORDER=pixels

BORDERCOLOR=color

CLASS=classname

COLS=col-widths

FRAMEBORDER=NO | YES | 0 | 1

FRAMESPACING=spacing

ID=value

LANG=language

<FRAMESET>

440 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

ROWS=row-heights

TITLE=text

<FRAMESET COLS=”50%, 50%”>
<FRAME SRC=”http://www.myserver.com/frameone.html”>
<FRAME SRC=”http://www.myserver.com/frametwo.html”>
</FRAMESET>

<HEAD>
The <HEAD> tag specifies the header section of an HTML document. Scripts are often placed
in the header to ensure they are loaded before the remainder of the page content.

<HTML>
<HEAD>
<TITLE>My Page</TITLE>
</HEAD>
<BODY>
Page info
</BODY>
</HTML>

<H1>, <H2>, <H3>, <H4>, <H5>, <H6>
The <H1>…<H6> tags specify headlines ranging from the largest size, <H1>, to the smallest,
<H6>. The headlines also include a default carriage return.

<H1>Level One is the largest headline</H1>
<H3>This is a level 3 headline, and is smaller</H3>

<HR>
The <HR> tag draws a horizontal rule line on the page, and can be varied in alignment, width,
and thickness. An URL can also be used to specify an image as the rule line. The <HR> tag
accepts the following attributes and values:

ALIGN=CENTER | LEFT | RIGHT

CLASS=classname

COLOR=color

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

NOSHADE

SIZE=n

441

A
App

SRC=url

STYLE=css1-properties

TITLE=text

WIDTH=n

<HR ALIGN=CENTER WIDTH=”75%”>
The above line is 75% of the window and centered.

<HTML>
The <HTML> tag specifies that the document contents are defined using the Hypertext
Markup Language.

<HTML>
This is an HTML Document.
</HTML>

<I>
The <I> tag specifies italicized text.

<I>This text is italicized</I>

The tag inserts a graphic element on the page. The tag accepts the following
attributes and values:

ALIGN=ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM | LEFT | MIDDLE |
RIGHT | TEXTTOP | TOP

ALT=text

BORDER=n

CLASS=classname

DATAFLD=colname

DATASRC=#ID

DYNSRC=url

HEIGHT=n

ISMAP

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

LOOP=n

LOWSRC=url

442 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

NAME=name

SRC=url

STYLE=css1-properties

TITLE=text

<INPUT>
The <INPUT> tag defines an input area on a form to accept user data entry. The <INPUT> tag
accepts the following attributes and values:

ACCESSKEY=key

CLASS=classname

DISABLED

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

MAXLENGTH=n

NAME=name

READONLY

SIZE=n

SRC=url

STYLE=css1-properties

TABINDEX=n

TITLE=text

TYPE=BUTTON | CHECKBOX | FILE | HIDDEN | IMAGE | PASSWORD | RADIO |
RESET | SUBMIT | TEXT

VALUE=value

<FORM>
<INPUT NAME=”UserName” TYPE=TEXT VALUE=”Your Login ID:”>
</FORM>

<LABEL>
The <LABEL> tag defines a label for elements that accept events, such as user buttons. The
<LABEL> tag accepts the following attributes and values:

ACCESSKEY=key

CLASS=classname

443

A
App

DATAFLD=colname

DATAFORMATAS=HTML | TEXT

DATASRC=#ID

FOR=ID

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

STYLE=css1-properties

TITLE=text

The tag specifies a list item in any number of list types including numbered lists, ordered
lists, and unordered lists.

List Item One
List Item Two

<LINK>
The <LINK> tag links two documents together, such as when using a global CSS style sheet.
The <LINK> tag accepts the following attributes and values:

DISABLED

HREF=url

ID=value

REL=stylesheet

TITLE=text

TYPE=“text/css”

<LINK REL=stylesheet HREF=”mystyle.css” TYPE=”text/css”>

<MAP>
The <MAP> tag defines the “target” areas for a client-side image map. The <MAP> tag accepts
the following attributes and values:

DISABLED

HREF=url

ID=value

<MAP>

444 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

REL=stylesheet

TITLE=text

TYPE=“text/css”

<MAP HREF=”http://www.myserver.com/mymap.gif”>
<AREA SHAPE=”RECT” COORDS=”0, 0, 75, 125">
</MAP>

<MARQUEE>
The <MARQUEE> tag creates a special text marquee for a page. The <MARQUEE> tag accepts
the following attributes and values:

BEHAVIOR=ALTERNATE | SCROLL | SLIDE

BGCOLOR=color

CLASS=classname

DATAFLD=colname

DATAFORMATAS=HTML | TEXT

DATASRC=#ID

DIRECTION=DOWN | LEFT | RIGHT | UP

HEIGHT=n

HSPACE=n

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

LOOP=n

SCROLLAMOUNT=n

SCROLLDELAY=milliseconds

STYLE=css1-properties

TITLE=text

TRUESPEED

VSPACE=n

WIDTH=n

<MARQUEE BEHAVIOR=SCROLL LOOP=4 SCROLLDELAY=500>
What an annoying tag!
</MARQUEE>

445

A
App

<META>
The <META> tag provides extraneous document information, such as keywords for search
engines. You can also use this tag to provide a rudimentary level of document control, such as
forcing the browser to reload the page contents at a certain interval. The <META> tag accepts
the following attributes and values:

CONTENT=description

HTTP-EQUIV=response

NAME=name

TITLE=text

URL=url

<META HTTP-EQUIV=”REFRESH” CONTENT=10>

<NOBR>
The <NOBR> tag forces text to be rendered with no line breaks.

<NOBR>This text would be shown as one line, even if we added the entire alphabet
a...z to it.</NOBR>

<NOSCRIPT>
The <NOSCRIPT> tag displays alternate information for browsers that do not support a
scripting language.

<NOSCRIPT>Why are you reading about DHTML if your
browser doesn’t support scripting!</NOSCRIPT>

<OBJECT>
The <OBJECT> tag enables you to construct an HTML object by combining different HTML
tags. The object is then available to scripting methods under the Dynamic HTML Object
Model, in a fashion similar to creating objects using <DIV> or . The <OBJECT> tag
accepts the following attributes and values:

ACCESSKEY=key

ALIGN=ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM | LEFT | MIDDLE |
RIGHT | TEXTTOP | TOP

CLASS=classname

CLASSID=id

<OBJECT>

446 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

CODE=url

CODEBASE=url

CODETYPE=media-type

DATA=url

DATAFLD=colname

DATASRC=#ID

HEIGHT=n

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

NAME=name

STYLE=css1-properties

TABINDEX=n

TITLE=text

TYPE=MIME-type

WIDTH=n

<OBJECT ID=”MyObject”>
<H1>An Object</H1>

<HR>
</OBJECT>

The tag creates an ordered list with items specified using the tag.

Ordered List Item One
Ordered List Item Two

<OPTION>
The <OPTION> tag creates choices for selection in forms when used in conjunction with the
SELECT element. The <OPTION> tag accepts the following attributes and values:

CLASS=classname

ID=value

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

SELECTED

447

A
App

TITLE=text

VALUE=value

Refer to the <SELECT> tag section for an HTML example that shows the <OPTION> tag as
implemented in HTML.

<P>
The <P> tag denotes the beginning of a new paragraph.

<P>This is a paragraph
<P>This is a new paragraph

<PARAM>
The <PARAM> tag specifies <APPLET> or <EMBED> tag parameters. The <PARAM> tag
accepts the following attributes and values:

DATAFLD=colname

DATAFORMATAS=HTML | TEXT

DATASRC=#ID

NAME=name

VALUE=value

<APPLET CODE=”MyApplet.class” WIDTH=500 HEIGHT=500>
<PARAM NAME=LOCATION VALUE=”USA”>
<PARAM NAME=SKILL VALUE=”EXPERT”>
<PARAM NAME=SPEED VALUE=”FAST”>
</APPLET>

<PRE>
The <PRE> tag specifies preformatted text. The text will be rendered with the same spacing
and line breaks in a fixed-width font.

<PRE>
The PRE tag
 Would
 be
 good
 for formatting
 poetry.
</PRE>

<S>
The <S> tag specifies strikethrough text.

<S>This text is strikethrough</S>

<S>

448 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

<SCRIPT>
The <SCRIPT> tag defines scripting elements in a page. When using Dynamic HTML, the
scripts can be JavaScript or VBScript. The <SCRIPT> tag accepts the following attributes and
values:

CLASS=classname

EVENT=eventname

FOR=element

ID=value

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

SRC=url

TITLE=text

<SCRIPT LANGUAGE=JAVASCRIPT>
 function scaleCat() {
 if (ScaleMe.style.pixelWidth > 0) {
 ScaleMe.style.pixelWidth -=1;
 ScaleMe.style.pixelHeight -= 1;
 window.setTimeout(“scaleCat();”, 1);
 scaleAnother();
 }
}
</SCRIPT>

<SELECT>
The <SELECT> tag enables you create a drop-down list box, with various items to choose from,
which are denoted by the <OPTION> tag. The <SELECT> tag accepts the following attributes
and values:

ACCESSKEY=key

ALIGN=ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM | LEFT | MIDDLE |
RIGHT | TEXTTOP | TOP

CLASS=classname

DATAFLD=colname

DATASRC=#ID

DISABLED

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

MULTIPLE

NAME=name

449

A
App

SIZE=n

STYLE=css1-properties

TABINDEX=n

TITLE=text

<SELECT NAME=”Meals” SIZE=1>
<OPTION VALUE=”1">Chicken
<OPTION VALUE=”2">Beef
<OPTION VALUE=”3" SELECTED>Vegetarian
</SELECT>

<SMALL>
The <SMALL> tag specifies text that will appear smaller in relation to the normal page text size.

If this is normal text...<SMALL>then this is small text</SMALL>

The tag creates an object similar to the <DIV> tag. The tag accepts the
following attributes and values:

CLASS=classname

DATAFLD=colname

DATAFORMATAS=HTML | TEXT

DATASRC=#ID

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

STYLE=css1-properties

TITLE=text

The tag places emphasis on text. Most browsers display strong as boldface.

This is bold!

450 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

<STYLE>
The <STYLE> tag is used with Cascading Style Sheets to establish style parameters for
elements. The <STYLE> tag accepts the following attributes and values:

DISABLED

TITLE=text

TYPE=“text/css”

<STYLE>
P {color: red; font-family: sans-serif}
H3 {color: blue}
</STYLE>

<SUB>
The <SUB> tag creates subscript text.

_{This text is subscript}

<SUP>
The <SUP> tag creates superscript text.

The 2nd example.

<TABLE>
The <TABLE>tag enables you to organize HTML and text into tables. The <TABLE> tag
accepts the following attributes and values:

ALIGN=CENTER | LEFT | RIGHT

BACKGROUND=url

BGCOLOR=color

BORDER=n

BORDERCOLOR=color

BORDERCOLORDARK=color

BORDERCOLORLIGHT=color

CELLPADDING=n

CELLSPACING=n

CLASS=classname

COLS=n

DATAPAGESIZE=n

451

A
App

DATASRC=#ID

FRAME=ABOVE | BELOW | BORDER | BOX | INSIDES | LHS | RHS | VOID |
VSIDES

HEIGHT=n

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

RULES=ALL | COLS | GROUPS | NONE | ROWS

STYLE=css1-properties

TITLE=text

WIDTH=n

<TABLE>
<TR>
<TD>This is Row One, Entry One.</TD>
<TD>This is Row One, Entry Two.</TD>
</TR>
<TR>
<TD>This is Row Two, Entry One</TD>
<TD>This is Row Two, Entry Two</TD>
</TR>
</TABLE>

<TD>
The <TD> tag specifies a single table entry. The <TD> tag accepts the following attributes and
values:

ALIGN=CENTER | LEFT | RIGHT

BACKGROUND=url

BGCOLOR=color

BORDERCOLOR=color

BORDERCOLORDARK=color

BORDERCOLORLIGHT=color

CLASS=classname

COLSPAN=n

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

NOWRAP

ROWSPAN=n

<TD>

452 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

STYLE=css1-properties

TITLE=text

VALIGN=BASELINE | BOTTOM | CENTER | TOP

Refer to the section on the <TABLE> tag to see how <TD> is implemented in HTML code.

<TEXTAREA>
The <TEXTAREA> tag creates an area for users to enter text data in a form (such as a
“comments” box). The <TEXTAREA> tag accepts the following attributes and values:

ACCESSKEY=key

ALIGN=ABSBOTTOM | ABSMIDDLE | BASELINE | BOTTOM | LEFT | MIDDLE |
RIGHT | TEXTTOP | TOP

CLASS=classname

COLS=n

DATAFLD=colname

DATASRC=#ID

DISABLED

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

NAME=name

READONLY

ROWS=n

STYLE=css1-properties

TABINDEX=n

TITLE=text

WRAP=OFF | PHYSICAL | VIRTUAL

<FORM METHOD=”POST”>
<TEXTAREA NAME=COMMENTS ROWS=10>
</TEXTAREA>
</FORMS>

<TITLE>
The <TITLE> tag specifies a title for an HTML page.

<HTML>
<TITLE>Some Generic Page</TITLE>
</HTML>

453

A
App

<TR>
The <TR> tag specifies a new table row. The <TR> tag accepts the following attributes and
values:

ALIGN=CENTER | LEFT | RIGHT

BGCOLOR=color

BORDERCOLOR=color

BORDERCOLORDARK=color

BORDERCOLORLIGHT=color

CLASS=classname

ID=value

LANG=language

LANGUAGE=JAVASCRIPT | JSCRIPT | VBSCRIPT | VBS

STYLE=css1-properties

TITLE=text

VALIGN=BASELINE | BOTTOM | CENTER | TOP

Refer to the section on the <TABLE> tag to see how <TR> is implemented in HTML code.

<TT>
The <TT> tag specifies “teletype” text, which is rendered as plain text in a fixed-width font.

<TT>This text is plain text!</TT>

<U>
The <U> tag specifies text that is to be displayed underlined.

<U>This text is underlined</U>

The tag creates an unordered list.

Item One on the List
Item Two

454 Appendix A HTML Elements and Attributes

ht tp ://www.quecorp.com

455

 B
App

T

BA P P E N D I X

CSS and CSS
Positioning Attributes

his appendix provides an overview of the Cascading Style
Sheets and Cascading Style Sheets Positioning attributes
and properties at your disposal for Dynamic HTML. For
further reading about CSS and CSS Positioning, consult
the following:

W3C Recommendation (REC-CSS1-961217)
Cascading Style Sheets, Level 1
http://www.w3.org/pub/WWW/TR/REC-
CSS1

W3C Working Draft (WD-positioning-970131)
Positioning HTML Elements with Cascading Style Sheets
http://www.w3.org/TR/WD-positioning ■

456 Appendix B CSS and CSS Positioning Attributes

http://www.quecorp.com

CSS Properties
The following properties can be used in any browser that supports the CSS-1 Specification,
including Internet Explorer versions 3.x or higher, and Netscape Communicator versions 4.x
and higher. Each of the CSS Properties is listed and accompanied by the values it accepts.

Fonts
The CSS Font Properties enable the manipulation of the fonts rendered in a web page. These
properties enable complete customization of the fonts used, ranging from the size of the fonts
to the style and the face of the fonts. Browser support for font features is quite robust; however,
keep in mind that when specifying font faces, that face must still be installed on a user’s ma-
chine in order to be rendered properly by the browser.

font The font property enables you to specify the characteristic of the font to be used in a
style. It accepts the following values: font-family, font-weight, font-style, font-size, font-variant,
line-height. Each of the values can be set independently, but the font property provides a short-
cut for specifying many properties in one declaration.

Usage:

font: font-family | font-weight | font-style | font-size | font-variant |
line-height

Example:

font: times-roman bold italic small

font-family The font-family property enables you to specify the name of the font family that
will be used to render the text of a style. The family name can be either a specific font face
(such as Times, Ariel) or a generic family name (such as Serif, Cursive). Keep in mind that not
all machines will have all families installed; therefore, you can provide alternate font families by
separating entries with a comma. The accepted generic family names are as follows:

■ Serif

■ Sans-serif

■ Monospace

■ Cursive

■ Fantasy

Usage:

font-family: family-name | generic-family

Example:

font-family: Times, serif

font-weight The font-weight property enables you to specify the weight of the rendered font.
It accepts keywords and a numeric value. The accepted values are as follows (Note: Normal =
400, Bold =700):

457

 B
App

■ 100, 200, 300, 400, 500, 600, 700, 800, 900

■ normal

■ bold

■ bolder

■ lighter

Usage:

font-weight: value

Examples:

font-weight: bold
font-weight: 400

font-style The font-style property enables you to specify the style with which the font is ren-
dered. The accepted values of this property are as follows:

■ normal

■ italic

■ oblique

Usage:

font-style: style

Example:

font-style: italic

font-size The font-size property enables you to specify the size of the rendered font. It accepts
values as an absolute size specified with a keyword, a length, a relative size, or a percentage.
Keywords for absolute size are as follows:

■ xx-small

■ x-small

■ small

■ medium

■ large

■ x-large

■ xx-large

The length represents the length of a character expressed in units, such as point size. The
relative and percentage values are context dependent, with the size of the font being set in
relation to the size of either a previous font or the container (such as the browser window).
Relative size can be set with the following keywords:

■ smaller

■ larger

CSS Properties

458 Appendix B CSS and CSS Positioning Attributes

http://www.quecorp.com

Usage:

font-size: absolute-size | relative-size | length | percentage

Examples:

font-size: x-large
font-size: 24pt
font-size: 120%

font-variant The font-variant property enables you to specify a small-caps version of the font
face. This property accepts only two values: normal and small-caps.

Usage:

font-variant: normal | small-caps

Example:

font-variant: small-caps

line-height The line-height property enables you to specify the height for a line of text. It
accepts three types of values:

■ normal—This is a keyword value and the default, specifying that the line-height should
be normal for the font.

■ number—This is a unit value specifying a line-height.

■ percentage—This sets the line-height in relation to the window size.

Usage:

font-height: normal | number | percentage

Example:

font-height: 20%

Backgrounds
CSS Style Sheets are capable of manipulating background information. This can be used to
specify different background characteristics, including colors and images.

background The background property enables you to specify the characteristics of a page’s
background. The background property itself represents a shorthand method to specify all val-
ues in one tag; or attributes can be set with the individual properties. The background property
accepts the following values: color, url, repeat, scroll, position, and the keyword “transparent.”

Usage:

background: transparent | color | url | repeat | scroll | position

Example:

background: red http://www.images.com/monkey.gif

459

 B
App

background-color The background-color property enables you to specify a color value for the
background of a page. This property accepts a value of color and also accepts a keyword of
“transparent.”

Usage:

background-color: transparent | color

Example:

background-color: red

background-image The background-image property enables you to specify an image for use
as a page’s background. It accepts an image location as an URL, and the default value is none.

Usage:

background-image: none | url

Example:

background-image: myface.gif

background-repeat The background-repeat property enables you to specify how a back-
ground image will repeat. The property accepts several keyword values of repeat, repeat-x,
repeat-y, and no-repeat.

Usage:

background-repeat: repeat | repeat-x | repeat-y | no-repeat

Example:

background-repeat: repeat-x

background-attachment The background-attachment property enables you to specify how a
background attachment is treated. It accepts the keyword values of scroll and fixed.

Usage:

background-attachment: scroll | fixed

Example:

background-attachment: fixed

background-position The background-position property enables you to specify the position of
a background element on the page.

Usage:

background-position: percentage | length | top | center | bottom | left | right

Example:

background-position: 75%

CSS Properties

460 Appendix B CSS and CSS Positioning Attributes

http://www.quecorp.com

Borders
Element borders can be manipulated with the following CSS attributes. Borders in CSS are
similar to borders for any HTML element that accepts a border parameter, such as images or
tables.

border The border property enables you to specify various border attributes with one prop-
erty. The border property accepts several types of keyword values for border-width and border-
style.

Usage:

border: border-width | border-style | color

Examples:

border: 75% solid red

border-top, border-bottom, border-left, border-right These border properties enable you to
specify different values for each of the different border edges, resulting in a variety of different
border techniques.

Usage:

border-location: border-width | border-style | color

Examples:

border-top: 50px solid blue
border-left: 100px dashed green

border-color The border-color property enables you to specify a color value for the border.
The border-color property accepts all the standard color keywords or specifications.

Usage:

border-color: color

Example:

border-color: green

border-style The border-style property enables you to choose a rendering style for the border.
Keyword values for this property include none, dotted, dashed, solid, double, groove, ridge, inset,
and outset.

Usage:

border-style: keyword

Example:

border-style: dashed

461

 B
App

border-width, border-top-width, border-bottom-width, border-left-width, border-right-
width The border-width properties enable you to specify the width of the entire border or
individual border segments. You can specify the border width with units of measurement,
percentages, or keywords. Keyword values include thin, medium, and thick.

Usage:

border-width: length | keyword

Examples:

border-width: 50%
border-width: thin

Text Formatting
The text formatting properties enable you to specify how to format different aspects of text on
your pages. Attributes such as letter-spacing and line-spacing can be manipulated to create
special looks.

word-spacing The word-spacing property enables you to change the amount of whitespace
that appears between words. The values for this property can be specified as normal, for no
deviation, or as any acceptable CSS unit of measurement.

Usage:

word-spacing: normal | length

Example:

word-spacing: .5in

letter-spacing The letter-spacing property enables you to specify the amount of whitespace
that appears between letters on the page. As with the word-spacing property, the value can be
specified as normal or as a CSS unit of measurement.

Usage:

letter-spacing: normal | length

Example:

letter-spacing: 3px

text-decoration The text-decoration property enables you to specify any special styles that
need to be applied to the text. It accepts several keyword values, including none, underline,
overline, and line-through.

Usage:

text-decoration: keyword

Example:

text-decoration: underline

CSS Properties

462 Appendix B CSS and CSS Positioning Attributes

http://www.quecorp.com

vertical-align The vertical-align property enables you to specify how to align elements verti-
cally, in relation to the baseline of the text. The value of this property can be specified as a
percentage or as a keyword. Keywords include baseline, sub, super, top, text-top, middle, bottom,
and text-bottom.

Usage:

vertical-align: keyword | percentage

Example:

vertical-align: baseline

text-transform The text-transform property enables you to specify transformations that can
be performed on text, manipulating the capitalization. The keyword values include capitalize,
uppercase, lowercase, and none.

Usage:

text-transform: keyword

Example:

text-transform: capitalize

text-align The text-align property enables you to specify how to align text elements on a
page. Keyword values include left, right, center, and justify.

Usage:

text-align: left | right | center | justify

Example:

text-align: justify

text-indent The text-indent property enables you to specify how elements are indented on a
page. The value can be given as a percentage value of the page width or as a CSS unit of mea-
surement.

Usage:

text-indent: length | percentage

Example:

text-indent: 1in

margin The margin property enables you to set all the margin values on a page if uniform
margins are desired. Values can be specified as a percentage of the window (or parent element)
or as a CSS unit of measurement.

Usage:

margin: length | percentage | auto

Example:

margin: 1in

463

 B
App

margin-top, margin-bottom, margin-left, margin-right These margin properties enable the
same control over margins as offered by the <MARGIN> tag, but enable more control over
each margin. Values can be given as percentages or as CSS units of measurement.

Usage:

margin-top: length | percentage | auto

Example:

margin-top: auto

The padding property enables you to specify the amount of padding space between an element
and the margin or a border. The padding can be specified as a percentage of the window (or
parent element) width or as a CSS unit of measurement.

Usage:

padding: length | percentage

Example:

padding: 25%

padding-top, padding-bottom, padding-left, padding-right These padding properties offer
the same functionality of the padding property, but enable more flexibility. Values also can be
specified as percentages or as CSS units of measurement.

Usage:

padding-top: length | percentage

Example:

padding-top: 15px

Layout Formatting
The layout formatting properties enable you to specify values for layout elements, such as a
positioning container. This provides you with the flexibility to design complicated layouts that
will be reproduced faithfully on different browsers.

width The width property enables you to specify the width of an element or positioning con-
tainer. The width can be set to any valid CSS unit of measurement, a percentage value of the
window (or parent element), or auto.

Usage:

width: measurement | percentage | auto

Example:

width: 250px

CSS Properties

464 Appendix B CSS and CSS Positioning Attributes

http://www.quecorp.com

height The height property enables you to define the height of an element or positioning
container. The height can be specified in any valid CSS unit of measurement or set to auto.

Usage:

height: measurement | auto

Example:

height: 100px

float The float property enables you to specify elements that are to be “floated” next to other
elements. Floating an image right, for example, will cause text to wrap around the left side of
the image. Keywords include none, left, and right.

Usage:

float: none | left | right

Example:

float: left

clear The clear property enables you to specify where floating elements may or may not be
floated. This property enables the designer to specify an area to be kept clear. Keywords in-
clude none, left, right, and both.

Usage:

clear: none | left | right | both

Example:

clear: both

display The display property enables you to specify how to display an element on the page.
Keyword values include block, inline, list-item, and none. Choosing a display value of block
causes the element to appear in a new box, typical of elements such as head tags, (for example,
<H2>) inline also results in the creation of a new box, however, keeps the element on the same
line, with no forced carriage return. List-item results in the item being treated as if it were in a
list, similar to using the tag. Users should note that the none keyword causes the item not
to be displayed at all.

Usage:

display: block | inline | list-item | none

Example:

display: none

white-space The white-space property enables you to determine how to treat whitespace on a
page. This property only accepts three keyword values: normal, pre, or nowrap.

Usage:

white-space: normal | pre | nowrap

465

 B
App

Example:

white-space: normal

List Formatting
The list formatting values enable you to specify the appearance of lists and how the labels of list
items appear.

list-style The list-style property enables you to specify all the attributes for list styles in one
property tag. It accepts the keyword values for type, image, and position.

Usage:

list-style: keyword | position | url

Example:

list-style: disc inside

list-style-type The list-style-type property enables you to specify the type of bullet point to use
for list items. The value is given as a keyword. Keywords include disc, circle, square, decimal,
lower-roman, upper-roman, lower-alpha, upper-alpha, and none.

Usage:

list-style-type: keyword

Example:

list-style-type: square

list-style-image The list-style-image property enables you to specify an image file that will be
used as the list bullet. This enables you to create customized bullet points for designs and to
specify the image by using an URL.

Usage:

list-style-image: url

Example:

list-style-image: mydot.gif

list-style-position The list-style-position property enables you to specify how the bullet points
are aligned next to list items. Keywords are inside and outside.

Usage:

list-style-position: keyword

Example:

list-style-position: inside

CSS Properties

466 Appendix B CSS and CSS Positioning Attributes

http://www.quecorp.com

Pseudo Classes
CSS provides several pseudo classes, which are classes that are automatically defined by the
browser environment. You can use the pseudo classes to specify styles for the link, active, and
visited psuedoelements; then the classes are automatically applied to the elements in the appro-
priate document. Here are the currently defined pseudo classes and their usage:

■ :link —The :link pseudo class represents a link.

■ :active —The :active pseudo class represents an active link or a link that is in the process
of being clicked. This can be used to create special effects when a user follows a link.

■ :visited —The :visited pseudo class represents a link that has already been visited.

Currently, only the Anchor tag <A> makes use of the pseudo classes.

Usage:

ELEMENT:link {style definition}

Examples:

A:link {color: red}
A:visited {color: gray}

Pseudo Elements
The pseudo elements are similar to the pseudo classes in that they represent a short-hand way
of setting styles for elements already defined by the browser. Currently, the two pseudo ele-
ments are as follows:

■ :first-line —The :first-line pseudo element represents the first line in a block of text, such
as a paragraph.

■ :first-letter —The :first-letter pseudo element represents the first letter in a text element.

These pseudo elements can be used to create text effects such as drop-caps and lead-ins.

Usage:

ELEMENT:first-line {style definition}

Examples:

P:first-line {text-transform: uppercase}
P:first-letter {font-size:200%; color: red}

Colors
The color property can be applied to a number of different CSS attributes. The color property
accepts 128 different colors, which are listed in Appendix F, “Browser-Safe Hexadecimal
Chart.”

Colors can also be controlled more subtly by using hex color values or RGB color values. This
gives designers more control over the precise colors rendered on the screen.

467

 B
App

Table B.1 RGB and Hexadecimal Color Codes

Color Specifiers Value Code

Hex Color #RGB

Hex Color #RRGGBB

RGB Color rgb(R, G, B)

RGB Percentage rgb(r%, g%, b%)

Usage:

color: keyword | #RGB | #RRGGBB | rbg(R, G, B) | rgb(r%, g%, b%)

Examples:

color: red
color: #550000
color: rgb(100%, 5%, 5%)

Units
For CSS attributes that require a physical value, it is useful, if not absolutely necessary, to apply
a measurement unit to the value for more explicit control. CSS provides a wide range of mea-
surement units:

Table B.2 CSS Measurement Units

Unit Symbol Equivalent

Points pt 1/72 inch

Picas pc 12 points

Ems em

X-Height ex

Pixels px

Millimeters mm

Centimeters cm

Inches in 2.54 cm

CSS Positioning Attributes
The syntax for specifying CSS Positioning attributes and values is identical to that of CSS-1.
The following properties can be used with the STYLE attribute to specify the location of

CSS Positioning Attributes

468 Appendix B CSS and CSS Positioning Attributes

http://www.quecorp.com

elements on a page layout. Using CSS Positioning is covered in detail in Chapter 9, “Layout and
Positioning.”

position Property
The position property enables you to specify the style of positioning that the browser will use
when positioning an element. The default HTML position value is “static”; however, two values
are accepted:

■ absolute—Absolute positioning renders the element on the page according to the
location specified by coordinates.

■ relative—Relative positioning flows like static positioning; however, coordinates can be
given. The placement of the element is then relative to its normally flowed position.

Usage:

position: value

Example:

position: absolute

top and left Properties The top and left properties enable you to specify the location of a
positioned element. These properties refer to the measurement from the top and the left of the
parent element, such as a browser window. The values accept unit measurements or percent-
age values.

Usage:

top: value
left: value

Examples :

top: 1cm
left: 20%

width and height Properties The width and height properties enable you to specify the width
and height of a position container element. The width and height are always specified with
respect to the origin of the element, as specified by the top and left properties. The width and
height properties also accept unit measurements or percentages.

Usage:

width: value
height: value

Examples:

width: 15pc
height: 75%

469

 B
App

overflow
The overflow property enables you to specify how excess data is handled for position contain-
ers that have width and height values set. The overflow property accepts three values:

■ none—This enables all the data to be shown, effectively ignoring the width and height
restrictions.

■ clip—This causes the data to be truncated according to the parameters defined by the
clip property.

■ scroll—This value adds scroll bars to the container, enabling all the data to be seen by
scrolling.

Usage:

overflow: value

Example:

overflow: scroll

clip
The clip property enables you to define a clipping area if the overflow property is set to clip.
The clip property accepts a shape value, or a value of “auto.” If the value is set to “auto,” then the
clipping area is defined as the area of the container. Otherwise a “rect” may be specified for the
shape, along with the coordinates in relation to the origin, defining the clipping rectangle:

rect(top right bottom left)

Usage:

clip: value

Example:

clip: rect(1cm 3cm 4cm 1cm)

z-index
The z-index property enables you to specify a layer for a positioned element to occupy. The
default layer is 0, with increasing integers being placed in the foreground. Negative integers
are also acceptable values. The layering of elements that share a z-index is determined by the
browser.

Usage:

z-index: value

Example:

z-index: 1

CSS Positioning Attributes

470 Appendix B CSS and CSS Positioning Attributes

http://www.quecorp.com

visibility
The visibility property enables you to specify if an element or layer is currently visible or not. It
accepts two values: visible and hidden.

It is important to note that hidden elements are still downloaded and occupy space in the layout,
but are rendered transparently. ■

Usage:

visibility: value

Example:

visibility: hidden

N O T E

471

C
App

A

CA P P E N D I X

Using VBScript Instead
of JavaScript

s you may have noticed, this book focuses almost exclu-
sively on JavaScript; however, scripting in VBScript is
definitely a viable alternative to JavaScript in Internet
Explorer 4.0.

This appendix provides a short introduction to the fea-
tures and syntax of VBScript. We have attempted to keep
the structure and examples as close as possible to those in
Chapter 5, “JavaScript Primer,” so that you can flip back
and forth easily to compare differences between the two
scripting languages. ■

472 Appendix C Using VBScript Instead of JavaScript

http://www.quecorp.com

Introduction to VBScript
VBScript was developed by Microsoft as an alternative to JavaScript for browser scripting. It is
descended from Microsoft’s Visual Basic and shares much of the same syntax.

Throughout the book, the scripts have been programmed in JavaScript. Letting the browser
know that the script is going to use VBScript instead requires setting the LANGUAGE param-
eter to “VBScript” in the <SCRIPT> tag:

<SCRIPT LANGUAGE=”VBScript”>
 ... Your Script ...
</SCRIPT>

The following Hello World script is a good starting point for learning VBScript:

<HTML>
<HEAD>
 <TITLE>
 Hello World in VBScript
 </TITLE>
</HEAD>
<BODY>

 <SCRIPT LANGUAGE=”VBScript”>

 document.write(“Hello, world”)

 </SCRIPT>

</BODY>
</HTML>

If the <SCRIPT> tag is new to you, take a look at Chapter 5, which discusses it in more detail.
Take a look at the only line in the document that contains VBScript code:

document.write(“Hello World”)

You can use VBScript to output any HTML you like, not just plain text. Try replacing the
VBScript from the previous example with the following:

<SCRIPT LANGUAGE=”VBScript”>

 document.write(“<H1>Hello, world</H1>”)

</SCRIPT>

Make sure you reload the HTML page to ensure the script is updated. Note that now “Hello
World” has been shown as an HTML heading rather than regular text.

Comments
Comments in VBScript are specified on a line-by-line basis. When you want to start a comment,
use the quote (‘) character; then everything you enter until the end of the line is not executed
by the VBScript Interpreter.

473

C
App

Add a comment to the Hello World example script:

<SCRIPT LANGUAGE=”VBScript”>

 ‘Write “Hello World” as a level 1 heading to the document
 document.write(“<H1>Hello, world</H1>”)

</SCRIPT>

Operators
VBScript provides a full range of operators to work with your data. You use operators to build
expressions. The standard types of operators used in VBScript are Arithmetic, Comparison,
and Logical Operators.

Arithmetic Operators
You use Arithmetic Operators to perform the standard types of mathematical operations that
you have been working with since childhood, but written in their full form. For instance, this is
the numerical expression for “2 plus 3”:

2 + 3

Table C.1 lists the common available operations that can be used on numbers in VBScript.

Table C.1 VBScript Arithmetic Operators

Operator Example Definition

+ 3 + 3 Addition

– 12 – 4 Subtraction

* 22 * 3 Multiplication

/ 18 / 4 Division

Mod 18 Mod 4 Modulo: The remainder after division. The
result here would be 2 because 4 goes into 18
four times with a remainder of 2.

– –(12 * 3) Unary Negation: The negative of the expres-
sion that follows. For example, the result here
would be –36. The negative of a negative is a
positive.

If you have an expression that contains more than one set of operations, you can group them
together with parentheses(‘(‘ and ’)’). This makes explicit the order in which the expressions
are evaluated. The following arithmetic expression uses parentheses to make the precedence:

((36 * 12) % 15) – (32 * 12) /3))

Operators

474 Appendix C Using VBScript Instead of JavaScript

http://www.quecorp.com

Logical and Comparison Operators
A logical (or Boolean) expression is an expression that, when evaluated, returns a result of
either true or false. Several ways can be used to generate Boolean expressions, but the most
common is to use logical or comparison operators (see table C.2). Take a look at a few Boolean
expressions:

True And False

This expression evaluates to false because one of the sides is not true, and the And operator
requires both sides to be true for the expression to evaluate to true.

26 < 50

The preceding expression, however, evaluates to true because 26 is indeed less than 50.

(26 < 50) Or False

Using the Or operator makes this expression a little less restrictive than And, needing only one
side to be true, so this expression evaluates to true.

Finally,

Not (10 <> 4)

evaluates to false. This type of expression required a little bit of thought—10 doesn’t equal 4,
which is true, but the NOT operator gives the opposite, which is false. Table C.2 lists the logi-
cal and comparison operators used by VBScript.

Table C.2 Logical and Comparison Operators

Operator Usage

And (exp1 And exp2) returns true if both exp1 and exp2 are true, otherwise
returns false

Or (exp1 Or exp2) returns true only if either exp1 or exp2 are true

Not (Not exp) returns false only if exp1 is true, or true if exp is false

= (exp1 = exp2) returns true only if the if exp1 is equal to exp2

<> (exp1 <> exp2) returns true only if exp1 is not equal to exp2

> (exp1 > exp2) returns true only if exp1 is greater than exp2

>= (exp1 >= exp2) returns true only if exp1 is greater than or equal to exp2

< (exp1 < exp2) returns true only if exp1 is less than exp2

<= (exp1 < exp2) returns true only if exp1 is less than or equal to exp2

475

C
App

Variables
When working with data, it is often advantageous to have a place to store your data temporarily.
VBScript enables you to use variables to store data during the duration the program is running.
A variable has a name and a value. The value of a variable can change over time.

Defining and Naming Variables
Defining variables in VBScript is quite straightforward. You use the “Dim” keyword before the
name of the variable you want to define. So, if you wanted to declare a variable named “posi-
tion,” you would use the following code:

Dim position

You can name a variable just about anything, as long as you follow these rules:

1. The variable name must begin with an alphabetic character.

2. The name cannot contain an embedded period.

3. The name cannot exceed 255 characters.

4. There cannot be another variable with the same name.

Here are a few examples of valid variable names:

Dim x_location
Dim_loc
Dim choice32
Dim answer_42

Here are a few examples of variable names that are not valid:

Dim 99balloons ‘violates the first rule
Dim eggs.bacon ‘violates the second rule

Unlike JavaScript, VBScript is not case-sensitive. This means that two variables can appear to
be different, but be the same variable. The following two statements, for example, would create
the same variable.

Dim testResult
Dim TestResult

Changing the Value of a Variable
To give a variable a new value after it is created, you need to use the assignment operator (=).
The variable name is listed on the left side of the statement. The expression containing the
value to be assigned to the variable is listed on the right side of the statement. Consider the
following simple example (assuming that the variable “currPosition” has already been created):

currPosition = 10

This changes the value of “currPosition” to 10. Variables can hold any type of data that you
want. Unlike JavaScript, there is no variable-type definition in VBScript. All the variables you
define in VBScript are automatically of type Variant. A Variant is a data type that automatically
adjusts itself to whatever data you ask it to hold.

Variables

476 Appendix C Using VBScript Instead of JavaScript

http://www.quecorp.com

From the programmers perspective there is only one data type, but internally the Variant data
type can hold many different types of data. These data types are known as the subtypes of the
Variant and it is often useful to know the ranges of the values that your variables can hold.
Table C.3 lists the subtypes of the Variant data type:

Table C.3 Variant Subtypes

Subtype Description

Boolean Contains either True or False.

Byte Contains integer in the range 0 to 255.

Integer Contains integer in the range –32768 to 32767.

Currency –922337203685477.5808 to 922337203685477.5807.

Long Contains integer in the range –2147483648 to 2147483647.

Single Contains a single-precision floating-point number in the range
–3.402823E38 to –1.401298E-45 for negative values; 1.401298E-45 to
3.402823E38 for positive values.

Double Contains a double-precision floating-point number in the range
–1.79769313486232E308 to –4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to 1.79769313486232E308 for positive
values.

Date (Time) Contains a number that represents a date between January
1st 100 to December 31 9999.

String Contains a variable-length string that can be up to approximately two
billion characters in length.

Object Contains an object.

Because variables are all the Variant type and the Variant type can hold different types of val-
ues, you can put different types of data into a variable at different times:

currPosition = True
currPosition = “foobar”

All the expressions you have seen so far are made up of constant data, but there’s no reason
you couldn’t use a variable in the expression as well. The interpreter just substitutes the value
of the variable into the expression. Therefore, assuming “currPosition” has the value 10, the
statement

currPosition = currPosition + 10

sets the value of currPosition to 20, adding 10 to the current value of the variable.

477

C
App

Procedures
It is often helpful to collect sections of code in a group that can be called again and again. Much
like a variable, you can name this grouping of code. These groups of code that can be called are
referred to as procedures.

VBScript has two different types of procedures: Sub procedures and functions. The difference
between the two is that Sub procedures cannot return values, but functions can.

Sub procedures and functions are called using their names, immediately followed by parenthe-
ses that enclose any arguments they may take. If a procedure exists named foo() that takes one
argument named “bar”, for instance, you would use the following syntax to call the procedure:

foo(bar)

Writing Your Own Sub Procedures
Writing your own Sub procedures is pretty straightforward. You start with the “Sub” keyword
followed by the name of the procedure, followed by any arguments that it takes in parentheses.

Next, you enclose any code you want to execute whenever the procedure is called. Finally, you
place “End Sub” on a line by itself to signify that the Sub procedure definition is complete.

Start by defining a Sub procedure called printIt:

Sub printIt(theText)
End Sub

This is a valid procedure definition, although admittedly it doesn’t do very much. Now, what do
you want to do inside the Sub procedure? Suppose that you want to print out the string
“theText” to the document:

Sub printIt(theText)

 document.write(theText)

End Sub

Now, whenever you want to call the procedure, you just use the keyword “Call” followed by the
name of the procedure, followed by a comma-delimited list of the arguments inside of parenthe-
ses. Therefore, if you wanted to use printIt to print “Hi There” to the document, you would use
the following code:

Call printIt(“Hi There”)

Returning Values via Functions
Although Sub procedures are quite useful, they have one major downfall: they cannot return
values. When you want to return values, you need to use a function. Functions are quite similar
to procedures except that they use the keyword “Function” and return a value.

Procedures

478 Appendix C Using VBScript Instead of JavaScript

http://www.quecorp.com

The way functions return values is a little tricky. To return values, you need to use the name
of the function as if it were a variable and set it to the return value. The following code shows
a simple function that takes a number and returns the square of that number to the calling
expression:

Function square(inNum)
 square = inNum * inNum
End Function

You are not limited to returning numbers via functions. In fact, any data that a Variant type can
hold can be returned via a user-defined function.

Flow Control
With the VBScript presented up to this point, any program you might write is linear. That is,
the program starts at the first statement, goes to the next, and so on.

Programming is, in many ways, about making decisions. What you do in one circumstance may
not be what you do in another. Also, you may want to do something over and over and over, but
up to this point the only way to do that would be to place the statements you want to repeat in a
function, then call that function over and over (or worse, cut and paste the statements you want
to call repeatedly).

The concept of diverting what the program does at a given point based upon differing condi-
tions is called flow control. VBScript gives you quite a bit of control over the flow program
through conditional statements such as if…else and repetition statements, such as for and while
loops.

Conditional statements like if…else enable you to make choices regarding which multiple paths
to take in your programs. On the other hand, repetition statements, such as for and while, give
you the option of executing a section of code over and over.

If…Then…Else
The most basic concept in flow control is branching based upon a conditional expression. That
sounds complicated, but all it means is to use a logical expression (remember those from ear-
lier in this appendix?) to decide whether to follow one path or another.

You construct an if statement by using the keyword “If ” followed by a logical expression (the
“Then” keyword) followed by the statements to execute if that logical expression is true. Fi-
nally, the line End If indicates that the if statement is complete. Take a look at a few concrete
examples:

Dim x
x = 10
Dim y
y = 25;

If x < y Then
 document.write(“x less than y”)
End If

479

C
App

If x <> y Then
 document.write(“x doesn’t equal y”)
End If

If x >= y Then
 document.write(“x greater than or equal to y”)
End If

If x = y Then
 document.write(“y equals y”)
End If

In the first case, “x less than y” is printed to the page because 10 is less than 25, which is true,
so the statement included in the if statement is executed. By the same logic, the second if
statement causes “x doesn’t equal y” to be printed to the screen. For the final two if statements,
nothing is printed, because their logical expressions are false, so the statement that follows is
not executed.

An if statement can be followed by more than one line of code; therefore, the End If construct
is used. All the code between the Then and the End If is executed if the logical expression
returns true. Take a look at the following example of this (assuming the same x and y variables
from the previous example):

If (x = y) Or (x < y) Then
 document.write(“x less than y “)
 document.write(“or x equals y”)
End If

In this case, “x less than y or x equals y” is printed because the logical expression is true (work
it out in your head if it isn’t immediately obvious, because it’s this sort of thinking that accli-
mates you to quickly understanding conditionals), and the block that follows the if contains two
statements that are then executed in order.

You can also construct an If…Then…Else conditional statement by adding the “Else” keyword
to the end of an if statement. In this case, the program will execute the statements following
the logical expression if the expression is true, or the statements following the “Else” keyword
if the expression is false. Take a look at another example (assuming again that x and y have the
values from the first example):

If x = y Then
 document.write(“y equals y”)
Else
 document.write(“x doesn’t equal y”)
End If

In this case “x doesn’t equal y” is printed. Why? The logical expression is false (because 10
doesn’t equal 25) so the statement following the expression isn’t executed. Because the expres-
sion was false, however, the statement following the “Else” keyword is executed, which prints
“x doesn’t equal y”.

Flow Control

480 Appendix C Using VBScript Instead of JavaScript

http://www.quecorp.com

For..Next loops
The For..Next loop is the most basic of looping statements. This looping statement enables you
to execute a statement (or block) a set number of times, based upon a counter and expression
to compare that counter against.

A For loop is constructed by starting with the keyword “For” followed by the name of a counter
variable, followed by the range that the variable will follow. If you wanted the loop to execute 10
times, for instance, you would use the range “1 to 10”. Finally come the statements to execute.
You specify the end of the For loop with the keyword “Next.”

This sounds a bit complicated, so try constructing a simple for loop. Suppose that you want to
print out every number from 1 to 10. This is the for loop you might use to do so:

Dim count
For count = 1 to 10
 document.write(count)
 document.write(“
”) ‘Print a break to separate lines
Next

Although this for loop is pretty simple, you could certainly get more complicated in the logic of
the loop by using the “Step” keyword, which states the amount the loop counter will be incre-
mented each time it is executed. You could have the loop start at 64, for instance, and then
subtract 1 from the counter until the counter variable equals 1:

For count = 64 To 1 Step –1

While..Wend loops
A While..Wend loop is much like a For..Next loop, except it only has a test case. Therefore, you
must make sure that conditions change over the execution of the while loop to ensure the test
case eventually fails (returns false).

You construct a While..Wend loop by using the “While” keyword, followed by a logical expres-
sion as a test case, then the statement(s) to execute each time, and finally the “Wend” keyword
to signify the end of the loop. The test case is checked before each time the statement(s) of the
while loop is executed.

You will want to initialize the counter variable outside the While..Wend loop (assuming you are
using a counter variable and not some other means of testing for completion), and somewhere
inside the While..Wend loop, you will want to make sure that the counter variable is updated.

The following code constructs a while loop that behaves the same way as the first for loop
example:

Dim count
count = 1

481

C
App

While count <= 10

 document.write(count)
 document.write(“
”) // Print a break to separate lines
 count = count + 1
Wend

First, before getting to the while loop itself, the counter variable is created and initialized to 1
because no section in the while loop itself is set aside for creating and initializing the counter
variable. Next, the test case is checked inside the while loop. Then, if the test case is true, the
body of the loop (the statement or block that follows) is executed. Note that 1 is added to count
at the end of the body, making sure that the condition in the test case will change after each
run through the loop.

Constants
VBScript enables you to define names for values that you will use often. Suppose, for instance,
you knew that the width of the image that you were going to work with in your VBScript pro-
gram was 350 pixels. You could continually add 350 throughout your code whenever you
wanted to use the width.

It would be much more readable and simpler to understand, however, if you could refer to that
width as “imgWidth”. VBScript provides you with this capability through constants.

A constant is defined much like a variable, except that instead of using the “Dim” keyword, you
use the “Const” keyword. Therefore, if you wanted to use the previous example and define a
constant “imgWidth” that had the value 350, you would use the following code:

Const imgWidth = 350

Four types of VBScript constants will be discussed in this appendix:

■ Color constants

■ Date/Time constants

■ Date Format constants

■ String constants

Color Constants
VBScript provides quite a few built-in constants that you can use in your programs. These are
quite helpful because you can refer to things by name instead of a more confusing value. You
can specify the color black, for instance, by “vbBlack” instead of “&h00”. Table C.4 lists the
built-in color constants employed in VBScript.

Constants

482 Appendix C Using VBScript Instead of JavaScript

http://www.quecorp.com

Table C.4 Color Constants

Constant Value Description

vbBlack &h00 Black

vbBlue &hFF0000 Blue

vbCyan &hFFFF00 Cyan

vbGreen &hFF00 Green

vbMagenta &hFF00FF Magenta

vbRed &hFF Red

vbWhite &hFFFFFF White

vbYellow &hFFFF Yellow

Date/Time Constants
You can use the date/time constants whenever working with VBScript’s data functions instead
of using the numbers associated with the values. Table C.5 lists the built-in date/time constants
employed in VBScript.

Table C.5 Date/Time Constants

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbFirstJan1 1 The week in which January
1 occurs (default) is used.

vbFirstFourDays 2 The first week that has at
least four days in the new
year is used.

vbFirstFullWeek 3 The first full week of the
year is used.

483

C
App

Constant Value Description

vbUseSystem 0 The date format contained
in the regional settings for
your computer is used.

vbUseSystemDayOfWeek 0 The day of the week
specified in your system
settings for the first day of
the week is used.

Date Format Constants
You can use the date format constants wherever date formats or conversions are needed in-
stead of the values. Table C.6 lists the built-in date format constants employed in VBScript.

Table C.6 Date Format Constants

Constant Value Description

vbGeneralDate 0 Display a date or a time. If the number is a real
number, display the date and time. If there is
not a fractional part, then only the date is
displayed. If there is not an integer part, only
the time is displayed. The date and time
display is determined by your system settings.

vbLongDate 1 Display a date using the long date format
specified in your computer’s regional settings.

vbShortDate 2 Display a date using the short date format
specified in your computer’s regional settings.

vbLongTime 3 Display a time using the long time format
specified in your computer’s regional settings.

vbShortTime 4 Display a time using the short time format
specified in your computer’s regional settings.

String Constants
String constants can be useful when building strings or writing to the document. Table C.7 lists
the built-in string constants employed in VBScript.

Constants

484 Appendix C Using VBScript Instead of JavaScript

http://www.quecorp.com

Table C.7 String Constants

Constant Value Description

vbCr Chr(13) Carriage return

vbCrLf Chr(13) + Chr(10) Carriage return & line feed combination

vbFormFeed Chr(12) Form feed; useful on platforms other
than MS Windows

vbLf Chr(10) Line feed

vbNewLine Chr(13) & Chr(10) Platform-specific newline character;
or Chr(10) whatever is appropriate for the platform

vbNullChar Chr(0) Character having the value 0

vbNullString String having value 0 Useful to call external procedures

vbTab Chr(9) Horizontal tab

vbVerticalTab Chr(11) Vertical tab; Useful on platforms other
than MS Windows

From Here…
With VBScript, Microsoft provides a viable and competent competitor to JavaScript. Although
JavaScript is currently more popular among web programmers, VBScript enables the millions
of programmers with Visual Basic experience to leverage their skills on the web.

If you want to learn more about VBScript, the best place to start is at Microsoft’s Visual Basic,
Scripting Edition web site. This site is available at http://www.microsoft.com/vbscript and
provides extensive tutorials and documentation along with a great deal of sample VBScript
code.

485

D
App

Scripting Objects,
Collections, Methods,
and Properties

his appendix will cover the objects, methods, and proper-
ties of the Dynamic HTML Object Model. The Dynamic
HTML Object Model enables the current HTML page and
even the browser window itself to be accessed as a large
collection of objects.

These objects are available via the Dynamic HTML Object
hierarchy. This hierarchy is shown in figure D.1. The
Dynamic HTML Object Model and its object hierarchy
are explored in Chapter 6, “Dynamic HTML Object
Model.” ■

T

DA P P E N D I X

486 Appendix D Scripting Objects, Collections, Methods, and Properties

http://www.quecorp.com

window object
The window object represents an open window in the browser. You can use it to access the rest
of the document, navigate throughout the browser, execute scripts, and perform many other
functions that are represented by the browser window itself.

The window object contains the following properties:

■ client—The navigator object.

■ closed—True if the window is closed, false if open.

■ defaultStatus—The default message in the status bar.

■ dialogArguments—The value passed to a modal dialog.

■ dialogHeight—The height of the current modal dialog.

■ dialogLeft—The left position of the current modal dialog.

■ dialogTop—The top position of the current modal dialog.

FIG. D.1
The Dynamic HTML
Object hierarchy.

487

D
App

■ dialogWidth—The width of the current modal dialog.

■ document—The document object for the window.

■ event—The event object for the window.

■ history—The history object for the window.

■ length—The number of elements in the window collection.

■ location—The location object for the window.

■ name—The name of the window.

■ navigator—The navigator object for the window.

■ offscreenBuffering—Boolean reporting true if off-screen buffering is enabled, false if
otherwise.

■ opener—A reference to the window that opened this window.

■ parent—The parent object of the window.

■ returnValue—The return value from the current modal dialog.

■ self—A self reference to the window object itself.

■ status—The status message at the bottom of the window.

■ top—The topmost window.

■ window—A window that is the child of this window, such as a frame.

The window object contains the following methods:

■ alert()—Opens an alert box that contains an OK button and a programmatically supplied
message.

■ blur()—Causes the current browser window to lose focus and fire the onblur() event.

■ clearInterval()—Cancels an interval previously set with setInterval.

■ clearTimeout()—Clears a timeout previously set by setTimeout.

■ close()—Closes the browser window.

■ confirm()—Opens a confirm dialog box with a programmatically supplied message and
an OK box.

■ execScript()—Executes a script (default is JavaScript).

■ focus()—Causes the browser window to receive mouse and keyboard focus.

■ navigate()—Displays the URL passed as an argument.

■ open()—Opens a new window with the URL passed as an argument.

■ prompt()—Displays a prompt dialog box with a user-editable input field and a message.

■ scroll()—Scrolls the window to the X and Y position supplied as arguments.

■ setInterval()—Repeatedly evaluates the supplied expression after a number of milli-
seconds specified as an argument.

■ setTimeout()—Evaluates the supplied expression after a number of milliseconds
specified as an argument.

window object

488 Appendix D Scripting Objects, Collections, Methods, and Properties

http://www.quecorp.com

■ showHelp()—Shows a help file located at the specified URL.

■ showModalDialog()—Creates a modal dialog box at the specified URL.

location object
The location object contains all the information on the location that the window is currently
displaying and all the details on that location (the port, the protocol, and so on). The location
object contains the following properties:

■ hash—The section of the href following the # symbol.

■ host—The hostname:port part of the URL.

■ hostname—The hostname part of the URL.

■ href—The entire URL.

■ pathname—The file (or possibly object) path following the third slash.

■ port—The port part of the URL.

■ protocol—The protocol portion of the URL.

■ search—The search portion of the URL following the ? symbol.

The location object contains the following methods:

■ assign()—Sets the current URL to the supplied argument.

■ reload()—Reloads the current URL.

■ replace()—Replaces the current document with the URL given as an argument.

frames collection
The frames collection contains all the frame windows contained in the current window that is
being displayed in the browser. It is important to note that what is contained in the frames
collection is not the frame elements themselves, but the window objects associated with those
frames.

history object
The history object contains information on all the URLs that the browser has recently visited.

The history object contains only one property, length, which indicates the number of URLs
currently saved in the history object.

The history object contains the following methods:

■ back()—Causes the browser to move back one into the history. This is the same as
hitting the Back button in the browser.

■ forward()—Causes the browser to move forward one into the history. This is the same
as hitting the Forward button in the browser.

■ go()—Causes the browser to go to a specified point in the history based upon a partial
URL passed as an argument.

489

D
App

screen object
The screen object enables you to find the capabilities and size of the screen on which the con-
tent will be displayed. It, for instance, is often advantageous to know the size of the screen
ahead of time to know whether your content will fit on the screen or not. The screen object’s
properties enable you to find out this sort of information.

The screen object contains the following properties:

■ height—The height of the screen in pixels.

■ width—The width of the screen in pixels.

■ colorDepth—The color depth contains the number of color bits per pixel for the screen.

■ bufferDepth—Specifies whether or not there is an off-screen basket.

■ updateInterval—The updateInterval property specifies how often, in milliseconds, the
screen is updated.

navigator object
The navigator object contains information about the capabilities of the browser itself.

The navigator object contains the following properties:

■ appCodeName—The code name of the browser.

■ appName—The name of the browser.

■ appVersion—The version of the browser.

■ cookieEnabled—Boolean representing whether the browser is enabled for cookies on
the client side.

■ userAgent—The user agent string sent by the browser to the server via HTTP when a
connection is made.

The navigator object contains the following methods:

■ javaEnabled()—Returns true if Java is enabled in the current browser, false if Java is
not enabled.

■ taintEnabled()—Returns true if data tainting is available, false if it is not. This method
always returns false in Internet Explorer 4.0.

event object
The event object contains a great deal of information about the state of the browser that can be
useful to programs when the event was fired.

The event object contains the following properties:

■ altKey—True if the Alt key is pressed when the event was fired, false if otherwise.

■ button—The mouse button that has been pressed: 0 if no button was pressed, 1 if the
left button was pressed, 2 if the right button was pressed, and 4 if the middle button was
pressed.

window object

490 Appendix D Scripting Objects, Collections, Methods, and Properties

http://www.quecorp.com

■ cancelBubble—True if the current event should bubble up the event hierarchy, false if
otherwise.

■ clientX—The X position of the mouse relative to the client area of the window.

■ clientY—The Y position of the mouse relative to the client area of the window.

■ ctrlKey—True if the Ctrl key was pressed when the event was fired, false if otherwise.

■ fromElement—The last element the mouse was over before it was over this one.

■ keyCode—The code of the key that was pressed when the event was fired.

■ offsetX—The X position of the mouse when the event was fired relative to the container
that received the event.

■ offsetY—The Y position of the mouse when the event was fired relative to the container
that received the event.

■ reason—The current condition of the data transfer object. Can be one of three states:
0—the data was transferred successfully, 1—the data transfer was aborted, and 2—there
was an error in the data transmission.

■ returnValue—The return value from the event.

■ screenX—The X position of the mouse relative to the size of the screen rather than the
browser window.

■ screenY—The Y position of the mouse relative to the size of the screen rather than the
browser window.

■ shiftKey—The state of the Shift key when the event was fired. The value is true if it was
pressed, false if otherwise.

■ srcElement—The element that originally fired the event that is now being handled.

■ srcFilter—The filter object that fired the onfilterchange event.

■ toElement—The element that the mouse moved to after it left the current one.

■ type—The name of the event as a string. The name of the event is retrieved without the
“on” prefix. Therefore, “onmouseover” would just be “mouseover.”

■ X—The X position of the mouse object when the event was fired relative to the nearest
parent object that was positioned with CSS Positioning.

■ Y—The Y position of the mouse object when the event was fired relative to the nearest
parent object that was positioned with CSS Positioning.

document object
The document object represents the current HTML document displayed in the browser win-
dow. You can use the document object to get information about the document and change the
document’s contents.

The document object contains the following properties:

■ activeElement—The element that has the focus.

491

D
App

■ alinkColor—The color of the active link.

■ bgColor—The background color of the page.

■ body—The body object for this document.

■ cookie—The string value of the current cookie.

■ domain—The security domain of the document.

■ fgColor—The text color of the document.

■ lastModified—The last modified date of the document.

■ linkColor—The color of links on the document.

■ location—The location object for this document.

■ parentWindow—The window that contains this document.

■ readyState—The current state of the document. Possible values are as follows:

• complete—if the document is loaded

• interactive—if the document is not completely loaded but the user can interact
with it

• loading—if the document is in the process of loading

• uninitialized—when the document is in the process of downloading but not
loaded on the browser window yet

■ referrer—The URL of the location viewed previously to this one.

■ selection—The selection object for this document.

■ title—The title of this document.

■ URL—This document’s URL.

■ vlinkColor—The color of visited links in this document.

The document object contains the following methods:

■ clear()—Clears the document output stream and transmits the data that was in the
stream to the document.

■ close()—Closes the current output stream.

■ createElement()—Creates a new IMG or OPTION element.

■ elementFromPoint()—Given an X and Y position as arguments, this method returns
the element present at that point.

■ execCommand()—Executes a command over a selection or a text range.

■ open()—Opens a stream that collects output from write or writeln methods.

■ queryCommandEnabled()—Returns true if the command passed as an argument is
enabled, false if otherwise.

■ queryCommandIndeterm()—Returns true if the command passed is in an indetermi-
nate state.

■ queryCommandState()—Returns true if the command passed has been carried out.

window object

492 Appendix D Scripting Objects, Collections, Methods, and Properties

http://www.quecorp.com

■ queryCommandSupported()—Returns true if the command passed is supported in
the browser.

■ queryCommandText()—Returns the string associated with the command passed as an
argument.

■ queryCommandValue()—Returns the value of the command passed as an argument.

■ write()—Writes the HTML expression passed as an argument to the document.

■ writeln()—Writes the HTML expression passed as an argument to the document
followed by a carriage return.

selection object The selection object enables scripts to access the information that the user
has currently highlighted with the mouse.

The selection object contains one property, type, which indicates the type of selection. The type
property can be one of two values—0, if there is no selection insertion point, or 1, if the selec-
tion is a text selection and there is in fact an insertion point.

The selection object contains the following methods:

■ clear()—Clears the contents of the selection.

■ createRange()—Creates a text range over the selection.

■ empty()—Deselects the current selection.

body object The body object contains information about the HTML elements that make up
the visible part of the HTML document in the current browser window.

The body object contains the following properties:

■ accessKey—The accelerator for the body.

■ background—The picture in the background of the body.

■ bgColor—The background color for the body.

■ bgProperties—The properties for the background picture, such as whether the picture
scrolls on the page.

■ bottomMargin—The bottom margin in pixels for the body of the page.

■ className—The CSS class name associated with the body of the page.

■ clientHeight—The height of the body in pixels.

■ clientWidth—The width of the body in pixels.

■ document—The document object for the body.

■ id—The CSS Identifier for the body.

■ innerHTML—The HTML code between the start and end tags of the body.

■ innerText—The HTML code between the start and end tags of the body represented
purely as text.

493

D
App

■ isTextEdit—Whether the text range can be edited. True if it can, false if otherwise.

■ lang—The ISO code for the language being used. Note that this is not the scripting
language, but the actual written language being used.

■ language—Specifies the computer scripting language in which the current script is
written.

■ leftMargin—The left margin for the entire page represented in pixels.

■ offsetHeight—The height of the body in pixels, relative to the parent.

■ offsetLeft—The left position of the body in pixels, relative to the parent.

■ offsetParent—The object that contains the body and provides the offset.

■ offsetTop—The top position of the body in pixels, relative to the parent.

■ offsetWidth—The width of the body in pixels, relative to the parent.

■ parentElement—The parent element of the body.

■ parentTextEdit—The next element in the object hierarchy on which a text range can be
created.

■ rightMargin—The right margin for the entire page represented in pixels.

■ scroll—Whether the scroll bars are on or off. If “yes,” they are on; if “no,” they are off.

■ scrollHeight—The scrolling height of the body in pixels, including content that is not
visible.

■ scrollLeft—The amount in pixels between the left edge of the body and the left edge
that is currently visible to the user in the browser.

■ scrollTop—The amount in pixels between the top edge of the body and the left edge
that is currently visible to the user in the browser.

■ scrollWidth—The scrolling height of the body in pixels, including content that is not
visible.

■ sourceIndex—The position of the body in the document’s source index.

■ style—The inline style sheet for the body.

■ tabIndex—The tab index for the body.

■ tagName—The tag for the current element (the body tag).

■ text—The text color for the body.

■ title—A Tooltip for the body.

■ topMargin—The top margin for the entire page represented in pixels.

The body object contains the following methods:

■ blur()—Causes the body object to lose mouse and keyboard focus.

■ click()—Simulates the user clicking the mouse button.

■ contains()—Returns true if the element passed as an argument is contained in the body,
false if otherwise.

■ createTextRange()—Creates a text range over the body.

window object

494 Appendix D Scripting Objects, Collections, Methods, and Properties

http://www.quecorp.com

■ focus()—Causes the body to receive mouse and keyboard focus.

■ getAttribute()—Returns the value for the attribute passed as an argument.

■ insertAdjacentHTML()—Inserts HTML code passed as an argument into the body.

■ insertAdjacentText()—Inserts text passed as an argument into the body.

■ removeAttribute()—Removes the attribute passed as an argument from the body.

■ scrollIntoView()—Scrolls the body into view.

■ setAttribute()—Sets the attribute passed as an argument.

anchors collection The anchors collection contains all the elements that contain an <A> tag
in them. Anchors are normally used in documents to specify hyperlinks, as in the following
example:

The Microsoft Site

links collection The links collection contains all the hyperlinks in the document. This collec-
tion contains all the elements in the anchors collection, plus all the elements that use the
<AREA> tag.

images collection The images collection contains all the images in the document. An image
is defined as an element that used the IMG HTML tag. Images that are produced without an
IMG tag, such as from a Java applet or ActiveX Control will not be present in this collection. All
these images are also contained in the applets collection.

forms collection The forms collection contains all the forms present in the document. A form
is defined as an element that uses the FORM HTML tag. Dynamic HTML will enable you to
place user interface controls outside of a form, but it is important to note that these controls
will not be present in the forms collection.

applets collection It may appear from the use of the term applets in this collection that the
applets collection only contains Java applets. In fact, the applets collection contains all the “ob-
jects” in the document.

Microsoft defines the following elements as “objects” that will appear in the applets collection:

■ applets—Elements with the <APPLET> tag.

■ embeds—Elements with the <EMBED> tag.

■ images—All images in the document, usually specified with the tag.

■ objects—Any element that uses the <OBJECT> tag.

■ intrinsic controls—These are the controls that are built into Internet Explorer 4.0 by
default.

embeds collection The embeds collection contains all the embedded content (plugins) in the
document. Plugins are programs that have been integrated into the browser to increase its
functionality. The Real Audio Player is a good example of a plugin.

495

D
App

styleSheets collection The styleSheets collection contains all the style sheets for this docu-
ment. A style sheet is contained for each occurrence of a LINK or STYLE element present in
the document.

plugins collection The plugins collection is an alias for the embeds collection.

frames collection The frames collection contains all the frames in the document. Frames are
considered windows themselves in HTML, so this collection contains window objects instead of
the actual frame element objects.

scripts collection The scripts collection contains all the scripts in the document. The scripts
themselves are represented by pure text and can be retrieved as pure text.

all collection The all collection encompasses the entire content of the page. It does this by
containing all the HTML elements that make up the document.

filters collection The filters collection contains all the Dynamic HTML multimedia filters for
the document. A filter enables the visible aspect of any element to be modified on-the-fly. For
instance, a blur filter causes the content of an element to become blurry.

From Here…
The scripting object, methods, properties, and collections form the foundation of Dynamic
HTML and are well worth exploring in more detail. Chapter 6 presents these objects, methods,
properties, and collections and explores how they fit into the rest of Dynamic HTML.

From Here…

496 Appendix D Scripting Objects, Collections, Methods, and Properties

http://www.quecorp.com

497

E
App

Special Edition Using
Dynamic HTML Web
Site

he Special Edition Using Dynamic HTML web site can be
found at http://www.quecorp.com/. The site is de-
signed to provide you with links to references cited within
the text, as well as being a source for the code and ex-
amples used in this book. All the sample pages used in
this book can be found on the site, and the source code for
the examples can also be downloaded in the form of a zip
file. ■

T

EA P P E N D I X

498 Appendix E Special Edition Using Dynamic HTML Web Site

http://www.quecorp.com

Using the Web Site
To take advantage of the Special Edition Using Dynamic HTML web site, it is important that
you use the latest version of Microsoft’s Internet Explorer 4.0 or higher. Because Dynamic
HTML is not currently an accepted Internet standard, most of the features and techniques on
this site apply only to Internet Explorer, although some of the techniques may work with
Netscape Navigator, the Netscape implementation of Dynamic HTML is not nearly as robust as
Microsoft’s, so Netscape users should proceed with caution. The site is divided into three
sections:

■ Online resources

■ Dynamic HTML chapter examples

■ Code zip files

Online Resources
The online resources section of the site contains links to popular Dynamic HTML sites, refer-
ence materials, and other tutorials that can be found online. These links are divided into three
sections:

■ Dynamic HTML—This section contain links to Dynamic HTML specific sites, and
reference materials for Dynamic HTML.

■ Cascading Style Sheets—This section contains links to reference materials for
Cascading Style Sheets and CSS Positioning.

■ Scripting Languages—This section contains links to reference materials for JavaScript
and VBScript.

Dynamic HTML
Dynamic HTML is both a collection of technologies and a new technology, designed to in-
crease the functionality of the browser. Because there is no Dynamic HTML standard yet, it is
important to be aware of changes in the various vendor’s versions of Dynamic HTML. Keeping
on top of the latest implementations of Dynamic HTML will help you keep your pages current,
so that your site can always look its best.

In the following sections you will find some links to the more important Dynamic HTML web
sites currently available. Check these sites frequently for reference material and late breaking
news about Dynamic HTML.

Microsoft Dynamic HTML Main Page The Microsoft Dynamic HTML Main Page is a part of
the Microsoft Site Builder Network. On this page you can find tutorials, FAQs, news, and links
to other Dynamic HTML resources. This is one of the most comprehensive Dynamic HTML
pages on the net.

http://www.microsoft.com/workshop/author/dhtml/

499

E
App

Microsoft Dynamic HTML Gallery The Micrsoft Dynamic HTML Gallery is a showcase of
what can, and is, being done with Dynamic HTML. This page is a great resource for seeing
how things are done, and for generating ideas on how Dynamic HTML can enhance your site.

http://microsoft.com/gallery/files/html/

Microsoft Internet Client SDK The Microsoft Internet Client SDK is a comprehensive
developer’s resource for all aspects of site development. Consider this site the ultimate refer-
ence and final authority for Dynamic HTML.

http://microsoft.com/msdn/sdk/inetsdk/help/default.htm

Microsoft Data Source Object Gallery The Microsoft Data Source Object Gallery contains
examples of how you can integrate database information into your web site. If you are explor-
ing the data awareness and data binding features of Dynamic HTML, this site is a valuable
resource.

http://microsoft.com/gallery/files/datasrc/

The DHTMLZone The DHTMLZone is a Macromedia site devoted to tracking Dynamic
HTML. It contains articles, news, examples, and showcases for Dynamic HTML on the net,
including Netscape’s implementation.

http://www.dhtmlzone.com/

W3C Document Object Model The W3C Document Object Model page points to the techni-
cal specifications for the object model on which Dynamic HTML is based. This site is an
excellent technical reference.

http://www.microsoft.com/workshop/prog/ie4/dom.htm

Cascading Style Sheets
The Cascading Style Sheets technology is an integral part of Dynamic HTML. Because style
sheets are so fundamentally important to DHTML, you should also be aware of trends and
changes in the CSS and CSS Positioning recommendations.

The following sites can provide you with news, information, and reference materials related to
Cascading Style Sheets.

W3C Cascading Style Sheets Home Page The World Wide Web Consortium’s Style Sheets
Home Page contains links to all kinds of materials related to Cascading Style Sheets, including
technical references, tutorials, and press clippings.

http://www.w3.org/Style/

Online Resources

500 Appendix E Special Edition Using Dynamic HTML Web Site

http://www.quecorp.com

W3C Cascading Style Sheets Level 1 Recommendation This is the of ficial recommendation
for Cascading Style Sheets, as determined by the W3C. The authoritative technical reference
for CSS.

http://www.w3.org/pub/WWW/TR/WD-css1

W3C CSS Positioning Proposal Here you will find the current working proposal for the
Cascading Style Sheets Positioning recommendation. Because this is still a working draft, you
might want to check here periodically to keep up with changes.

http://www.w3.org/TR/WD-positioning

Microsoft Guide to Style Sheets The Microsoft Guide to Style Sheets contains tutorials and
information that are specific to Microsoft’s implementation of style sheets in Internet Explorer.

http://www.microsoft.com/workshop/author/css/css-f.htm

Microsoft Style Sheets Gallery The Microsoft Style Sheets Gallery is part of the Site Builder
Network, and showcases what designers are doing with Style Sheets. This is a good place for
idea generation and to see “how it’s done.”

http://www.microsoft.com/gallery/files/styles/default.htm

Microsoft Typography Style Sheet Demo Pages Another “gallery” style site from Micro-
soft that showcases what can be done with CSS, particularly in regard to typography and
typesetting.

http://www.microsoft.com/truetype/css/gallery/entrance.htm

Scripting Languages
Dynamic HTML makes extensive use of scripting languages, both JavaScript and VBScript.
Because VBScript and JavaScript are not exclusive to Dynamic HTML, changes might be made
to the scripting languages that could affect your DHTML pages. Keeping on top of the script-
ing language you choose to use could prevent problems. The pages in the following sections
provide reference points for both languages.

Netscape JavaScript Guide The Netscape JavaScript Guide provides information and tutori-
als on JavaScript, the scripting language featured in this book. This site is a good place for
learning JavaScript and for looking at examples.

http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html

Netscape JavaScript Reference The Netscape JavaScript Reference is a comprehensive
reference for JavaScript. It is technical in nature, but a valuable resource when coding
JavaScript.

http://developer.netscape.com/library/documentation/communicator/jsref/
index.htm

501

E
App

Microsoft JScript Home The Microsoft JScript Home is the Microsoft guide to JavaScript.
Although the Netscape sites tend to be more comprehensive, this site can be useful for seeing
which JavaScript versions and/or features are implemented in Microsoft products.

http://www.microsoft.com/jscript

Microsoft VBScript Home The Microsoft VBScript Home is a great jumping point for
VBScript resources. The site contains links to tutorials, examples, and reference materials.

http://www.microsoft.com/vbscript

Cool DHTML Sites
In addition to all the resources that are available for Dynamic HTML, there are also some
advantages to seeing what other sites are doing. Following is a list of sites that are “cool” Dy-
namic HTML sites. What makes them cool? The fact that they are using Dynamic HTML for
starters! But these sites also showcase new and innovative ways that you can use Dynamic
HTML to enhance your site.

Project Cool Project Cool is a site that features resources and tools for Internet developers.
The site contains lessons for Dynamic HTML, and a host of examples.

http://www.projectcool.com/developer/

ActiveIE ActiveIE is more than just a Dynamic HTML page. Because Dynamic HTML is just
one of the many new features of Internet Explorer 4.0, this site showcases new features and
contains links to documentation, FAQs, and so on.

http://www.activeIE.com

IE4 Globe The IE4 Globe is another web site that showcases new Internet Explorer 4.0 fea-
tures. A large section is dedicated to Dynamic HTML, featuring news clips, examples, and
references.

http://www.pconline.com/~mf5/ie4/

Online Resources

502 Appendix E Special Edition Using Dynamic HTML Web Site

http://www.quecorp.com

Code Examples
The following examples from Special Edition Using Dynamic HTML can be viewed on the site,
and correspond to the numbered code listings found in the text.

Chapter 4: Cascading Style Sheets Primer
■ A Global Style Sheet Example (global.css)

■ A Local Style Sheet Example (local.css)

■ 4.1 An Example of Conflicting Style Definitions (ch04ex01.htm)

■ 4.2 Nesting Styles (ch04ex02.htm)

■ 4.3 More Nesting Styles (ch04ex03.htm)

Chapter 5: JavaScript Primer
■ 5.1 Hello World in JavaScript (ch05ex01.htm)

■ 5.2 Changing Variable Contents (ch05ex02.htm)

■ 5.3 Using the Eval Function (ch05ex03.htm)

■ 5.4 Building Your Own Function (ch05ex04.htm)

■ 5.5 A JavaScript Date Program (ch05ex05.htm)

Chapter 6: Dynamic HTML Object Model
■ 6.1 Counting Paragraphs with the document.all Collection (ch06ex01.htm)

■ 6.2 Looking at the Properties of an Element (ch06ex02.htm)

Chapter 7: Event Handling
■ 7.1 Basic JavaScript Event Handling (ch07ex01.htm)

■ 7.2 Event Handling on Arbitrary HTML Elements (ch07ex02.htm)

Chapter 8: Dynamic Styles
■ 8.1 Changing a Font Style (ch08ex01.htm)

■ 8.2 Changing Font Size (ch08ex02.htm)

■ 8.3 Changing Font Color (ch08ex03.htm)

■ 8.4 Hiding an Element with Visibility (ch08ex04.htm)

■ 8.5 Peek-A-Boo Example (peekaboo.html)

■ 8.6 An Expanding Outline (outline.html)

503

E
App

Chapter 9: Layout and Positioning
■ 9.1 An Absolute Positioning Example (ch09ex01.htm)

■ 9.2 A Relative Positioning Example (ch09ex02.htm)

■ 9.3 A Static Positioning Example (ch09ex03.htm)

■ 9.4 Positioning Comparisons (ch09ex04.htm)

■ 9.5 Column Example (ch09ex05.htm)

■ 9.6 Overflow Example (ch09ex06.htm)

■ 9.7 Clipping Example (ch09ex07.htm)

■ 9.8 Layers Example (ch09ex08.htm)

■ 9.9 Another Example (ch09ex09.htm)

■ 9.10 Visibility Example (ch09ex10.htm)

■ 9.11 Animation Example (ch09ex11.htm)

Chapter 10: Dynamic Content
■ 10.1 Text Ranges (ch10ex01.htm)

■ 10.2 Deleting a Page with Text Ranges (ch10ex02.htm)

■ 10.3 Manipulating Text with Text Ranges (ch10ex03.htm)

■ 10.4 Changing Content and Styles with Text Ranges (ch10ex04.htm)

Chapter 11: Introduction to Data Binding
■ 11.1 Repeated-Table Binding (ch11ex01.htm)

■ 11.2 Single-Value Binding (ch11ex02.htm)

Chapter 12: Using Data Source Objects
■ 12.1 Moving Around in Recordsets (ch12ex01.htm)

■ 12.2 Sorting Example (ch12ex02.htm)

Chapter 13: Introducing Multimedia
■ 13.1 Scaling an Image (ch13ex01.htm)

■ 13.2 Shrinking an Image with Scaling (ch13ex02.htm)

■ 13.3 Using Scaling to Create a Transition (ch13ex03.htm)

■ 13.4 Moving Images with Positioning (ch13ex04.htm)

Chapter 14: Multimedia Transitions
■ 14.1 Creating a Transition Between Images (ch14ex01.htm)

Code Examples

504 Appendix E Special Edition Using Dynamic HTML Web Site

http://www.quecorp.com

Chapter 15: Multimedia Filters and ActiveX Controls
■ 15.1 X-Ray Filter (ch15ex01.htm)

■ 15.2 Drop Shadow Filter (ch15ex02.htm)

■ 15.3 Flip Horizontal Filter (ch15ex03.htm)

■ 15.4 Flip Vertical Filter (ch15ex04.htm)

■ 15.5 Gray Filter (ch15ex05.htm)

■ 15.6 Invert Filter (ch15ex06.htm)

■ 15.7 Lights Filter (ch15ex07.htm)

■ 15.8 Blur Filter (ch15ex08.htm)

■ 15.9 Alpha Filter (ch15ex09.htm)

■ 15.10 Shadow Filter (ch15ex10.htm)

■ 15.11 Wave Filter (ch15ex11.htm)

Chapter 16: Pin the Tail on the Donkey
■ Pin the Tail on the Donkey (PinTheTail.html)

Chapter 17: Basketball Explained
■ Basketball Tutorial (BBTutorial.html)

Chapter 18: Building an Online Catalog
■ 18.1 The Foundations of the Online Catalog (catalog1.htm)

■ 18.2 The Online Catalog with Data Sorting Mechanisms in Place (catalog2.htm)

■ 18.3 The Final Burnham Brothers Online Catalog (catalog.htm)

Chapter 19: Building the Smashout Video Game
■ 19.1 Building the Arena (smashout1.htm)

■ 19.2 Animating the Smashout Game (smashout2.htm)

■ 19.3 The Final Page! (smashout.htm)

Appendix G: Dynamic HTML Tips and Utilities
■ G.1 Recursive VBScript (appGex01.htm)

■ G.2 Recursive JavaScript (appGex02.htm)

■ G.3 Error Handling (appGex03.htm)

■ G.4 A Filter Generator (appGex04.htm)

■ G.5 Filter Generation Program in JavaScript (appGex05.htm)

■ G.6 Filter Generation Program in VBScript (appGex06.htm)

505

E
App

N O T E

■ G.7 ArcDegrees (appGex07.htm)

■ G.8 Page Analyzer (appGex08.htm)

Source Code Zip File
The complete source code and graphic image files for the examples used in Special Edition
Using Dynamic HTML can be found in the CompleteCode.zip file.

For Macintosh users, the .zip file containing code examples can still be downloaded and
decompressed on the Macintosh by using the StuffIt Expander. ■

This file contains all the code examples used, and all the supporting graphic files. It can be
downloaded and extracted onto your local hard drive to eliminate download time, and to enable
you to edit and change the code.

Source Code Zip File

506 Appendix E Special Edition Using Dynamic HTML Web Site

http://www.quecorp.com

507Appendix F Browser-Safe Hexadecimal Chart

23

F
APP

O

FA P P E N D I X

Browser-Safe
Hexadecimal Chart

ffering up a monochromatic web page can, in most cases,
spell instant death for attracting lots of visitors to your site.
Sensible, aesthetically appealing use of color can add
depth and even aid in structuring information on a page.

With web style sheets, color becomes a bigger issue due
to the interplay between text and background. To pull off a
successful color scheme for your site, you need to ensure
that all browsers will render your site’s colors in the same
fashion.

Two ways that you can specify color in the HTML code for
your page are by indicating its hexadecimal RGB value or
by indicating a color name. To specify, for example, that a
font should appear as BlueViolet, you would use the hexa-
decimal RGB value in your code as shown in the following
line:

Likewise, you could specify the same color by using its
color name as shown in the following line:

508 Appendix F Browser-Safe Hexadecimal Chart

http://www.quecorp.com

Regardless of which manner of color specification you use in your HTML code, the following
table provides a complete reference to the X11 colors that are supported by current versions of
the Netscape and Microsoft web browsers and subsequently, most visitors to your site. Each
color is indicated by color name, the hexadecimal RGB code, and the decimal code that you
may use when rendering color in Photoshop or whatever imaging software you are using. ■

Table F.1 Browser-Safe Hexadecimal Chart

Color Name RGB Code Decimal Code

AliceBlue #F0F8FF 240,248,255

AntiqueWhite #FAEBD7 250,235,215

Aqua #00FFFF 0,255,255

Aquamarine #7FFFD4 127,255,212

Azure #F0FFFF 240,255,255

Beige #F5F5DC 245,245,220

Bisque #FFE4C4 255,228,196

Black #000000 0,0,0

BlanchedAlmond #FFEBCD 255,235,205

Blue #0000FF 0,0,255

BlueViolet #8A2BE2 138,43,226

Brown #A52A2A 165,42,42

BurlyWood #DEB887 222,184,135

CadetBlue #5F9EA0 95,158,160

Chartreuse #7FFF00 127,255,0

Chocolate #D2691E 210,105,30

Coral #FF7F50 255,127,80

CornflowerBlue #6495ED 100,149,237

Cornsilk #FFF8DC 255,248,220

Crimson #DC143C 220,20,60

Cyan #00FFFF 0,255,255

DarkBlue #00008B 0,0,139

DarkCyan #008B8B 0,139,139

DarkGoldenrod #B8860B 184,134,11

DarkGray #A9A9A9 169,169,169

509Appendix F Browser-Safe Hexadecimal Chart

23

F
APP

DarkGreen #006400 0,100,0

DarkKhaki #BDB76B 189,183,107

DarkMagenta #8B008B 139,0,139

DarkOliveGreen #556B2F 85,107,47

DarkOrange #FF8C00 255,140,0

DarkOrchid #9932CC 153,50,204

DarkRed #8B0000 139,0,0

DarkSalmon #E9967A 233,150,122

DarkSeagreen #8FBC8F 143,188,143

DarkSlateBlue #483D8B 72,61,139

DarkSlateGray #2F4F4F 47,79,79

DarkTurquoise #00CED1 0,206,209

DarkViolet #9400D3 148,0,211

DeepPink #FF1493 255,20,147

DeepSkyBlue #00BFFF 0,191,255

DimGray #696969 105,105,105

DodgerBlue #1E90FF 30,144,255

FireBrick #B22222 178,34,34

FloralWhite #FFFAF0 255,250,240

ForestGreen #228B22 34,139,34

Fuchsia #FF00FF 255,0,255

Gainsboro #DCDCDC 220,220,220

GhostWhite #F8F8FF 248,248,255

Gold #FFD700 255,215,0

Goldenrod #DAA520 218,165,32

Gray #808080 128,128,128

Green #008000 0,128,0

GreenYellow #ADFF2F 173,255,47

Honeydew #F0FFF0 240,255,240

continues

Color Name RGB Code Decimal Code

510 Appendix F Browser-Safe Hexadecimal Chart

http://www.quecorp.com

HotPink #FF69B4 255,105,180

IndianRed #CD5C5C 205,92,92

Indigo #4B0082 75,0,130

Ivory #FFFFF0 255,255,240

Khaki #F0E68C 240,230,140

Lavender #E6E6FA 230,230,250

LavenderBlush #FFF0F5 255,240,245

LawnGreen #7CFC00 124,252,0

LemonChiffon #FFFACD 255,250,205

LightBlue #ADD8E6 173,216,230

LightCoral #F08080 240,128,128

LightCyan #E0FFFF 224,255,255

LightGoldenrodYellow #FAFAD2 250,250,210

LightGreen #90EE90 144,238,144

LightGrey #D3D3D3 211,211,211

LightPink #FFB6C1 255,182,193

LightSalmon #FFA07A 255,160,122

LightSeaGreen #20B2AA 32,178,170

LightSkyBlue #87CEFA 135,206,250

LightSlateGray #778899 119,136,153

LightSteelBlue #B0C4DE 176,196,222

LightYellow #FFFFE0 255,255,224

Lime #00FF00 0,255,0

LimeGreen #32CD32 50,205,50

Linen #FAF0E6 250,240,230

Magenta #FF00FF 255,0,255

Maroon #800000 128,0,0

MediumAquamarine #66CDAA 102,205,170

Table F.1 Continued

Color Name RGB Code Decimal Code

511Appendix F Browser-Safe Hexadecimal Chart

23

F
APP

MediumBlue #0000CD 0,0,205

MediumOrchid #BA55D3 186,85,211

MediumPurple #9370DB 147,112,219

MediumSeaGreen #3CB371 60,179,113

MediumSlateBlue #7B68EE 123,104,238

MediumSpringGreen #00FA9A 0,250,154

MediumTurquoise #48D1CC 72,209,204

MediumVioletRed #C71585 199,21,133

MidnightBlue #191970 25,25,112

MintCream #F5FFFA 245,255,250

MistyRose #FFE4E1 255,228,225

Moccasin #FFE4B5 255,228,181

NavajoWhite #FFDEAD 255,222,173

Navy #000080 0,0,128

OldLace #FDF5E6 253,245,230

Olive #808000 128,128,0

OliveDrab #6B8E23 107,142,35

Orange #FFA500 255,165,0

OrangeRed #FF4500 255,69,0

Orchid #DA70D6 218,112,214

PaleGoldenrod #EEE8AA 238,232,170

PaleGreen #98FB98 152,251,152

PaleTurquoise #AFEEEE 175,238,238

PaleVioletRed #DB7093 219,112,147

PapayaWhip #FFEFD5 255,239,213

PeachPuff #FFDAB9 255,218,185

Peru #CD853F 205,133,63

Pink #FFC0CB 255,192,203

Plum #DDA0DD 221,160,221

Color Name RGB Code Decimal Code

continues

512 Appendix F Browser-Safe Hexadecimal Chart

http://www.quecorp.com

PowderBlue #B0E0E6 176,224,230

Purple #800080 128,0,128

Red #FF0000 255,0,0

RosyBrown #BC8F8F 188,143,143

RoyalBlue #4169E1 65,105,225

SaddleBrown #8B4513 139,69,19

Salmon #FA8072 250,128,114

SandyBrown #F4A460 244,164,96

SeaGreen #2E8B57 46,139,87

Seashell #FFF5EE 255,245,238

Sienna #A0522D 160,82,45

Silver #C0C0C0 192,192,192

SkyBlue #87CEEB 135,206,235

SlateBlue #6A5ACD 106,90,205

SlateGray #708090 112,128,144

Snow #FFFAFA 255,250,250

SpringGreen #00FF7F 0,255,127

SteelBlue #4682B4 70,130,180

Tan #D2B48C 210,180,140

Teal #008080 0,128,128

Thistle #D8BFD8 216,191,216

Tomato #FF6347 255,99,71

Turquoise #40E0D0 64,224,208

Violet #EE82EE 238,130,238

Wheat #F5DEB3 245,222,179

White #FFFFFF 255,255,255

WhiteSmoke #F5F5F5 245,245,245

Yellow #FFFF00 255,255,0

YellowGreen #9ACD32 154,205,50

Table F.1 Continued

Color Name RGB Code Decimal Code

513

G
App

T

GA P P E N D I X

Dynamic HTML Tips
and Utilities

he world of Dynamic HTML, although still in a state of
infancy, has expanded enormously since the introduction
of the first browsers capable of dynamically manipulating
content in an HTML document. Now the hype is about
Internet Explorer 4.0, Microsoft’s new browser and oper-
ating system upgrade. If you evaluated Internet Explorer
4.0 through its platform preview releases, you understand
the difficulties of getting everything to work. Also, with
sparse availability of documentation at times, both the
developer’s and the writer’s tasks were even more difficult
than with Internet Explorer 3.0.

This appendix is based on the Internet Explorer 4.0
browser, Platform Preview Release 2, which reflects the
vast number of features and advantages of this browser.
Most of the information contained in this appendix will
probably not change with subsequent releases. This ap-
pendix, although intended to be supplementary to the
material in this book, is in no way a complete guide to all
the wonderful things you can do with Dynamic HTML and
Internet Explorer 4.0. It does, however, provide a focal
point that will bring you one step closer to fully utilizing
Dynamic HTML.

514 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

This appendix provides several Dynamic HTML applications, pointers, tips, and tricks. Some you can
plug right into your application and others you can use with slight modifications. Other parts of this
appendix feature procedures that will help you construct useful applications and other programs that
will help you understand Dynamic HTML and Internet Explorer 4.0 better. This information is orga-
nized in the following way:

■ Using Scripting Languages—Scripting languages are the lifeblood of Dynamic HTML.
This section shows you how to make the best use of them and introduces some ad-
vanced programming concepts.

■ Using Visual Effects—This section shows you some unique examples of Dynamic
HTML’s visual effects functionality, including a filter wizard and some interesting ways to
use the DirectDraw API.

■ Obtaining Browser and Document Information—This is always an important
feature, even more so for people developing dynamic content. This section will show you
how to access and manipulate browser and document information.

■ Learning More— This section points you to additional resources, but more importantly,
it shows you how to analyze examples written by other people. ■

Scripting Languages
Because scripting languages are the lifeblood of Dynamic HTML, you should have a full under-
standing of their uses, including when to use a specific feature or type of syntax of a scripting
language, or when it’s best to use a specific scripting language itself. Currently, two scripting
languages are supported by Internet Explorer 4.0: VBScript and JavaScript.

Something included with an HTML page is considered inline, and that is also true for scripting
languages. Inline scripting languages employ sandbox architecture, which means they are lim-
ited to how they can access and use your browser and ultimately, your computer. This security
feature does not make JavaScript or VBScript very powerful compared to other languages, but
it still makes them well-suited for Dynamic HTML. This security feature creates an inequality
between JavaScript and VBScript, regardless of how much they otherwise seem to be alike.
JavaScript, for instance, is often considered a “sandbox” scripting language like VBScript, but a
few security holes have recently been exposed through JavaScript due to its C-like versatility.
However, Internet Explorer prevents these security holes.

One of the purposes of this section is to acquaint you with how JavaScript and VBScript com-
pare technically, along with the strengths and weaknesses of each language. This will be illus-
trated through several examples, which will help you understand Dynamic HTML better, as
well. Often, how each language compares in usage seems to be more important, but a lack of
understanding of the inner workings of each language can cripple a developer. This section will
feature several important and often-overlooked aspects of scripting languages: how you can
optimize using each scripting language; when to best use a specific language; recursion and
indefinite processes; and probably most importantly, error handling and how to “gracefully
degrade” a user when a possible error can occur on your page.

515

G
App

Selecting the Optimal Scripting Language
Determining which scripting language to use can be as simple as determining which language
provides the best functionality for your intended task or application. Making this decision can
also be complicated when creating an entire program specification with a project specification,
requirements and definitions of first level procedures, and so forth. With such a wide range of
issues regarding which language you use, how should you decide?

Consider this example: You have a form for submitting data on the page, and you want to do
this manually because you want additional control over how your data is submitted. Therefore,
you cannot submit the form through standard means (the Submit button). You want to use the
GET method to submit your form, so how would you do this? First, you know that the GET
method does not accept most non-alphanumeric characters, and it uses text-to-ASCII number
conversion for these characters, translating the ASCII integer value to a hex value. So, if a user
submitted data that read “John Doe,” for example, you would want to use your script to submit
it as: “John%20Doe” where %20 is the hex conversion for 32, which is the ASCII character for
“space.” Several solutions to this problem are possible. The first example examines a VBScript
solution:

‘This should be embedded inside a script block
...
sub ConvertItForSubmit(MyString)
‘This Sub procedure is used to determine
‘the length of a string that is passed through
‘the MyString argument and use it to parse
‘through the string to determine characters not
‘suitable for the GET method of form submission
...
lenMyString = len(MyString)
for i = 1 to lenMyString
 MyCurrentLetter = left(MyString, i)
 ConvertLetter(MyCurrentLetter)
 strNewString = strNewString & MyCurrentLetter
loop
...
function ConvertLetter(MyLetter)
‘This function takes a single character and
‘determines if it is an invalid character
select case MyLetter
case “!”
 ConvertLetter = “%21”
Case chr$(32)
 ConvertLetter = “%20”
...
end select
end function

The program works as described in the following algorithm:

1. The Sub procedure called ConvertItForSubmit(MyString) is called externally from
another part of the program. This Sub procedure accepts an argument in the form of a
string that is to be encoded.

Scripting Languages

516 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

2. The ConvertItForSubmit() Sub procedure determines the length of the sting.

3. It uses this length to loop through every letter in the string.

4. In the looping process, the ConvertLetter(MyLetter) Sub procedure, which accepts a
single character as an argument is called.

5. ConvertLetter() converts all invalid characters into the appropriate hexadecimal code.

6. A new string is built that is acceptable for form submission.

This task is not too difficult to program, and you could probably completely code such an appli-
cation within an hour; however, the escape() JavaScript function does this automatically, as
shown in the following example:

Function ConvertString(MyString)
{
//This function converts a string and parses invalid characters
return escape(MyString);
}

Just a couple of lines in JavaScript is all it takes to accomplish the same thing listed in the
VBScript example, and if you did code such a program, you would have saved some time know-
ing about this function. You may not know JavaScript, so what do you do? Well, you can be
resigned to just using the previous VBScript method. Note also, that you can reuse a Sub pro-
cedure to complete similar tasks.

For now, keep in mind that the need for excessive scripting you might experience in one script-
ing language might be significantly reduced in another. If you want to convert numbers easily
between decimal, octal, or hex, for instance, you should use VBScript. For the most part,
VBScript has better string manipulation. If you want control over creating your own objects,
JavaScript provides the capability to create objects, but VBScript does not. On the other hand,
VBScript interfaces nicely with ActiveX Controls and Java applets and also has excellent error
handling. The best way to determine which scripting language is best suited for your needs
might involve spending 15 or 20 minutes reading through the documentation to see exactly
what each scripting language has to offer.

Recursion
Recursion is the process of repeating some process over and over again. Recursion, in program-
ming, is a wonderful tool. By applying recursion to Dynamic HTML, you can make some pretty
powerful applications. Unfortunately, when reference manuals discuss recursion, it is often
limited to an application such as finding a factorial of a number. The place recursion has the
greatest effect in Dynamic HTML is with animation and with changing effects of different
elements on the page.

In this section, you will see some basic applications of recursion, including a “neon” sign,
which you can place directly in any document. This example will be presented in both VBScript
and JavaScript. In each code listing, some features specific to each language will be used to

517

G
App

implement the neon sign, and these features will be pointed out. The implementation of these
features will then be used to demonstrate the various advantages and weaknesses of each
language.

Controlling Recursion in VBScript Recursion is not hard to implement in JavaScript or
VBScript. In fact, recursion can be as simple as implementing a loop as follows:

<SCRIPT LANGUAGE=”VBSCRIPT”>
‘Initialize variables
dim x
x = 99
‘set up do loops
do until x = –1
 alert x & “ bottles of root beer on the wall”
 x = x –1
loop
</SCRIPT>

The do loop repeats the contained statements, counting down the number of root beer bottles
100 times, after which, the loop exits. Such a loop is impractical for this task because it pre-
vents the user from doing anything else; however, the do loop will be useful at other times,
such as in forcing input from a user.

Another form of recursion involves a Sub procedure that calls itself repeatedly until a given
condition is true:

<SCRIPT LANGUAGE=”VBSCRIPT”>
‘calls the recursive Sub procedure
call checkName()

sub checkName()
‘This sub checks for a valid name
 InputMe = inputbox(“Enter Your Name”,”Name:”)
 if InputMe = “My Name” then
 exit sub
 else
 call checkName()
 end if
end sub
</SCRIPT>

In the previous listing, the VBScript calls a Sub procedure named checkName() that displays an
input box on the screen and prompts the user for a name. If the name is invalid, then the Sub
procedure checkName() is continuously called and the input box is continuously displayed until
a valid name, in this case “My Name,” is entered inside the input box. This is practical recur-
sion in action, but how does this apply to Dynamic HTML, you may wonder. How recursion
lends itself to Dynamic HTML will be shown in the following example.

The neon sign is a bunch of text that changes through a set of predefined colors, but more
importantly, it accomplishes this task through recursion, style sheets, scripting, and the script-
ing object model. Recursion is what makes the gears turn in the following listing and causes
the perpetual behavior of the color scrolling. VBScript recursion is demonstrated in listing G.1.

Scripting Languages

518 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

Listing G.1 Recursive Programming in VBScript

001. <HTML>
002. <HEAD>
003. <TITLE>Recursive operations in VBScript
004. </TITLE>
005. <SCRIPT LANGUAGE=”VBScript”>
006. ‘initialize global variables
007. ‘lngMyTimeOut is used to initialize the setTimeout function
008. ‘strMyColorArray holds the colors
009. ‘intColorCount is used to keep track of which color is selected
010. ‘intWhichStyle is used to determine whether the text should
011. ‘ blink, or if it should change colors
012. ‘bolVisVar is used to determine whether the text in CStyles()
013. ‘ should be visible
014. ‘intSpeed is to specify the speed of span1
015.
016. dim intColorCount, lngMyTimeOut, intClrArrayLen, _
017. intSpeed, intWhichStyle, objMySpan, bolVisVar
018. intClrArrayLen = 4
019. dim strMyColorArray(4)
020. intColorCount = 0
021. intSpeed = 1000
022. intWhichStyle = 0
023. bolVisVar = true
024. strMyColorArray(0) = “#FF89F9”
025. strMyColorArray(1) = “#8FF6FF”
026. strMyColorArray(2) = “#8E76FF”
027. strMyColorArray(3) = “#FF25B3”
028. strMyColorArray(4) = “#70FF85”
029. ‘You can add as many or as few colors as you want to the strMyColorArray()
030. ‘as you want by changing the array declaration, adding the additional array
041. ‘variable which has the color and by changing the intClrArrayLen to
042. ‘the value of the largest index array number
043. </SCRIPT>
044.
045. <BODY BGCOLOR=”#FFE0E7"
046. onload=”VBScript: lngMyTimeOut = _
047. setTimeout(‘call ChangeColorStyle()’,1000)”>
048.
049. <SPAN id=”span1"
050. STYLE=”font-size: .5in;
051. font-family:signet roundhand ATT;
052. font-weight:bold”>Enter Here
053.
054.
055. <SCRIPT LANGUAGE=”VBSCRIPT”>
056. ‘This object reference is to the style object of the tag name “span1”,
057. ‘used to make the program more efficient and easier to write.
058. set objMySpan = document.all.span1.style
059.
060. sub ChangeColorStyle()
061. ‘This is the main Sub procedure used to determine which
062. ‘style to display by using intWhichStyle.
063.

519

G
App

064. select case intWhichStyle
065. case 0
066. CColors
067. case 1
068. CStyles
069. end select
070. end sub
071.
072.
073. sub CColors()
074. ‘CColor() is used to display a set of predefined colors
075. ‘from the strMyColorAray() to the span1 tag. A simple checking
076. ‘method is used to ensure that the array does not go out of bounds.
077. objMySpan.visibility = “visible”
078. objMySpan.color = strMyColorArray(intColorCount)
079. if intColorCount + 1 > intClrArrayLen then
080. intColorCount = 0
081. else
082. intColorCount = intColorCount + 1
083. end if
084. lngMyTimeOut = setTimeout(“ChangeColorStyle”,intSpeed)
085.
086. end sub
087.
088. sub CStyles()
089. ‘CStyles() is used to rapidly switch the visibility of the span1 tag
090. ‘on an off, it starts with an initial speed of 250 milsecs (fast)
091. objMySpan.color = “red”
092. intSpeed = 250
093. txtSpeed.value = intSpeed
094. if bolVisVar = true then
095. objMySpan.visibility = “hidden”
096. bolVisVar = false
097. else
098. objMySpan.visibility = “visible”
099. bolVisVar = true
100. end if
101. lngMyTimeOut = setTimeout(“ChangeColorStyle”,intSpeed)
102. end sub
103. </SCRIPT></BODY></HTML>

Listing G.1 has the following parts:

■ The header of the document specified by the <HEAD> tag that includes relevant
information about the document (<TITLE> tag), and a scripting block specified by the
<SCRIPT> tag that defines all the variables and constants that will be used in the
program. These variables and constants are fully documented in the listing.

■ The body of the document includes primarily the tag used for the neon sign and
the scripting block, which holds the main program.

■ The scripting block contains three Sub procedures and an object declaration. These are
also documented with the code.

Scripting Languages

520 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

If you are familiar with the document object, style sheet properties, and VBScript, then you know
what is being done in the code. If not, pay particular attention to lines 45–47 and line 84 of
listing G.1:

045. <BODY BGCOLOR=”#FFE0E7"
046. onload=”VBScript: lngMyTimeOut = _
047. setTimeout(‘call ChangeColorStyle()’,1000)”>

084. lngMyTimeOut = setTimeout(“ChangeColorStyle”,intSpeed)

You see the first line of the preceding code once in the entire document. It is bound to the
onload event of the <BODY> tag. This means the code contained in the onload=“...” attribute
will be executed when the document loads. The code is inline to the tag, which is one of several
ways you can add script to your HTML document (see Appendix C, “Using VBScript Instead of
JavaScript” for more information). The scripting language that will be used is VBScript, and
this is signified by the “VBScript: ...” statement for the onload event. Next, you see that the
variable lngMyTimeOut is set to a function call, which is part of the window object called
setTimeout. Basically, the setTimeout function waits a specified period of time (in line 47, 1000
milliseconds or 1 second) then executes the specified statement that is calling the
ChangeColorStyle() Sub procedure.

JavaScript is the default language for Internet Explorer 4.0, which means if you create a script block
with the <SCRIPT> and </SCRIPT> tags without specifying any attributes, you will use JavaScript.
Similarly, when you specify inline event code for different elements, JavaScript is the default language
and you must use either the someEvent=“VBScript: code here...” method, where you specify the
language followed by the statements in the event attribute itself, or you must add the
LANGUAGE=“VBScript” attribute to the tag for which you want to handle the event.

The second line of code you see twice—once in the CColors() Sub procedure and once in the
CStyles() Sub procedure. It does the same thing as the previous listing of code, except the
amount of time to wait is not “hard coded” into the function. Instead, it takes the form of a
variable called intSpeed. Because intSpeed can change, so can the amount of time in the
setTimeout() function.

Both instances of the setTimeout() (lines 84 and 101) function do the same thing; they call the
ChangeColorStyle() Sub procedure. The ChangeColorStyle() (line 60) Sub procedure contains a
select case structure that determines what type of effect to apply to the (span1) tag
that was mentioned. If it is the first choice in the select case structure, then the effect applied
to the span1 is that of a neon sign—a change in color. If it is the second choice, then span1
rapidly blinks.

The recursiveness of this program comes into play when calling either CColors() or CStyles();
each has a different effect on span1, and the setTimeout() function that is at the end of each
Sub procedure again calls the ChangeColorStyle() Sub procedure, which then determines
which style to use, and so on. The intWhichStyle variable determines which style to use. The
style can only be changed by user intervention. So, if you have the initial value of intWhichStyle
set to “0,” then span1 will continue to behave like a neon sign. If you change the intWhichStyle
value to “1,” then span1 blinks rapidly.

T I P

521

G
App

You can easily play around with the speed and the display of the tag to create different
effects by inserting the following lines right below in the document:

<HR>
<INPUT TYPE=”button” NAME=”btnSpeed” VALUE=”Change Speed”
 onclick=”VBScript: intSpeed = txtSpeed.value”>
<INPUT TYPE=”text” NAME=”txtSpeed” VALUE=”1000"
 TITLE=”The higher the number, the slower the change”>

<INPUT TYPE=”button” NAME=”btnStyle” VALUE=”Change Style”
 onclick=”VBScript: if intWhichStyle = 0 then _
 intWhichStyle = 1 else intWhichStyle = 0">

The preceding code listing is a quick user interface that was designed to investigate the differ-
ent properties of the neon sign. This code’s interface consists of a horizontal rule and three
<INPUT> tags. <INPUT> tags specify HTML intrinsic controls, which are also sometimes re-
ferred to as form controls. The first <INPUT> tag is a button that is used in conjunction with the
second <INPUT> tag, which is a text box. You enter a desired speed in the text box and click
the “Change Speed” button to watch the speed of the text, “Enter Here,” change. The higher
the value, the slower it goes because you are specifying a larger interval. The third <INPUT>
tag switches between the two styles previously mentioned. You might notice that all the code
for accomplishing the aforementioned tasks is inline to each respective <INPUT> tag or con-
trol. The code entered is simple VBScript. Specifying short bits of inline code and calling exter-
nal Sub procedures or functions are all that is really recommended for handling events inline.

Controlling Recursion in JavaScript As you can see, implementing recursive tasks and add-
ing advanced functionality in VBScript is relatively simple, as is true for JavaScript. JavaScript
has a few added features that make recursion more powerful with JavaScript, as you will see in
listing G.2. Figure G.1 illustrates this listing.

Listing G.2 Recursive Programming in JavaScript

01. <HTML>
02. <HEAD>
03. <TITLE>JavaScript example of recursive code</TITLE>
04. </HEAD>
05. <SCRIPT>
06. //declare colors array
07. var myColors = new Array()
08. myColors[0] = “lightblue”
09. myColors[1] = “blue”
10. myColors[2] = “darkblue”
11. myColors[3] = “purple”
12. </SCRIPT>
13.
14. <BODY>
15.
16. Our Text
17.
<B id=”test2">Hullo!
18.
19. <SCRIPT>
20. //variable declarations to make code cleaner

continues

Scripting Languages

522 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

21. var objSpanNeon = document.all.span1
22. var objBNeon = document.all.test2
23. function controlSpan(objMain, speed, scrlColors, whichOption, objID)
24. {
25. //Methods
26. this.begin = begin;
27. this.dispStyle = dispStyle;
28. this.color = getColor;
29. this.Timer = setTimeout;
30.
31. /* this.begin is the method that initiates the process
32. this.dispStyle is used to switch between changing
33. colors and blinking
34. this.color is a method that changes the color of an element
35. this.Timer is a setTimeout function made part of the object */
36.
37. //Objects
38. this.objMain = objMain;
39. this.scrlColors = scrlColors;
40.
41. /* this.objMain is the object passed on which all the style
42. manipulation will occur. It is passed as an
43. argument to the function
44. this.scrlColors is the array containing all the colors in
45. the form of “colorname” or “#RRGGBB” */
46.
47. //Properties
48.
49. this.bolVis = true;
50. this.colorInd = –1;
51. this.objID = objID + “.begin()”;
52. this.scrlLen = scrlColors.length – 1;
53. this.speed = speed;
54. this.TimerVar = 0;
55. this.whichOption = whichOption;
56. this.stopit = stopit;
57.
58. /* this.bolVis is used in the dispStyle method to determine
59. whether the text should be visible or invisible
60. this.colorInd is used with the color array to scroll through
61. the colors
62. this.objID is used with the Timer method to create recursiveness
63. this.scrlLen is used to scroll through the colors and to make
64. sure that this.colorInd does not go over bounds
65. this.speed sets the speed of the this.Timer method
66. this.TimerVar sets the Timeout ID for the Timer method, in case
67. it has to be stopped for some reason
68. this.whichOption is the variable used to switch between the
69. different styles in dispStyle. 2 exist now. */
70.
71. }
72.
73. function getColor(newColor)

Listing G.2 Continued

523

G
App

74. //this method sets the color of the given object
75. {
76. this.objMain.style.color = newColor;
77. }
78.
79. function begin()
80. //this method is what is used to start changing styles
81. //for the given object
82. {
83. this.dispStyle();
84. this.TimerVar = this.Timer(this.objID, this.speed);
85. }
86.
87. function dispStyle()
88. //This is the heart of our “neon sign” function
89. //it contains the conditionals used to determine
90. //which style to apply to the given object.
91. {
92. if(this.whichOption == 0)
93. {
94. if(++this.colorInd > this.scrlLen)
95. this.colorInd = 0;
96. this.color(this.scrlColors[this.colorInd]);
97. }
98. if(this.whichOption == 1)
99. {
100. if(this.bolVis == false)
101. this.objMain.style.visibility = “hidden”;
102. else
103. this.objMain.style.visibility = “visible”;
104. this.bolVis = !this.bolVis;
105. }
106. }
107.
108. function stopit()
109. {
110. clearTimeout(this.TimerVar)
111.
112. }
113. //The declaration below is used to declare a new neon sign object.
114.
115. var spanner = new controlSpan(objSpanNeon, 1000, myColors, 0, “spanner”);
116. var bold2 = new controlSpan(objBNeon, 500, “”, 1, “bold2”);
117. //start the style changing for span1
118. spanner.begin();
119. bold2.begin();
120.
121.
122. </SCRIPT>
123.
<INPUT TYPE=”button” onclick=”spanner.stopit()” Value=”Stop First
➥Label”>
124. <INPUT TYPE=”button” onclick=”bold2.stopit()” Value=”Stop Second
➥Label”>
125. </BODY>

Scripting Languages

524 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

Much like the VBScript listing, listing G.2 has the following parts:

■ The header portion of the document, which contains a scripting block that has general
information (such as the color array definitions and so on).

■ The <BODY> portion of the document, which includes a tag used with the first
object definition, a tag used with the second, and two HTML intrinsic command
buttons that cancel the special effects of the first and second groups of text.

■ The <SCRIPTING> portion in the <BODY> tag is the most important part of the docu-
ment. With it, the object is created and two instantiations are created that correspond
with the tags labeled “span1” and “test2” respectively.

Listing G.2 shows a culmination of several important parts of JavaScript other than recursion.
The most important, and the one you might have noticed immediately, is that an object pack-
ages all the methods and properties of the neon sign. When everything is packaged nicely and
neatly into an object, you have cleaner, more portable, and easier-to-use code, in addition to
relieving some of the headaches involved with debugging the code. Furthermore, with
JavaScript’s instantiation capability, you can quickly create an unlimited number of neon signs
on a page.

Examine what is happening in the program. First, two object references are created that
reference the tag and the tags, which are in javaneon.htm. An object called
controlSpan() is created and the methods and properties are added. Then, two instantiations
(spanner and bold2) of the object are created for the tags with which they are used. The
controlSpan() object is defined on line 23:

FIG. G.1
You can create
instances of the
controlSpan() object
any number of times
with different elements
on the page.

525

G
App

function controlSpan(objMain, speed, scrlColors, whichOption, objID)
{...}

When you create an instantiation of controlSpan(), you also create the need for arguments to
initialize the contents of the object. The first argument, objMain, is the reference to the object
that will be manipulated. In this case, the objects (or elements) called “span1” and “bold2” will
be used for the objMain argument, as you will see in the following code listing. The speed argu-
ment defines the timing speed for the setTimeout() function that will be used to dynamically
change the styles of the two elements. The scrlColors argument contains the array of colors
used to change a neon sign’s color. The whichOption argument determines which style (blink-
ing or changing colors) should be displayed for a given element. Finally, the objID argument
sends the name of the instantiated object to itself. You will understand the full purpose of this
argument later in this section.

Now that you know the purposes of the arguments this object accepts, examine the
instantiations of controlSpan in lines 115–116:

var spanner = new controlSpan(objSpanNeon, 1000, myColors, 0, “spanner”);
var bold2 = new controlSpan(objBNeon, 500, “”, 1, “bold2”);

The first instantiation (or creation) for the new object called “spanner” is for the tag.
You know this because, for the objMain argument, the variable objSpanNeon is used as one of
the properties for the object, which references document.all.span1 or the SPAN element that is
used in this example. Next, a speed of 1000 is given for the object, which specifies how fast
objects will dynamically change styles. The higher the value, the slower the effects will occur.
The myColors[] array contains all the colors that will be used to change colors for the neon
sign. The value “0” is given for the whichOption argument, which specifies which dynamic style
the object will use. This can be either “0,” which specifies changing through colors as defined
in the scrlColors array, or “1,” which specifies an element that blinks on and off on the screen.
Finally, “spanner” is given as the instantiated object name.

The second object creation is similar to the first, except during the creation of the object the
array of colors is not used at an argument because there is no need for them. For this object,
the only thing that is desired is the blinking effect (the effect would require the whichOption to
be set as 1).

To start the process of dynamically manipulating the styles for each of the elements, you must
invoke the begin() method for each object as shown in listing G.2. Stopping each process is
quite simple, and you should be able to determine how that is done by reading the script.

Now for the recursive part. As one of the methods of the controlSpan object, you include the
setTimeout() function on line 29:

this.Timer = setTimeout;

Basically, the preceding code is essential in creating the object with black-box architecture in
mind, so everything is contained and the object does not have to rely on anything that is not
within the function. To follow the black-box architecture, the this constructor is used exten-
sively to ensure the object is not reliant on any other code except its own. A problem occurs,
however, when you try to use the setTimeout() function with the this constructor for the

Scripting Languages

526 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

controlSpan() object. Because the setTimeout() function is part of the window object, the this
constructor points to the window object every time the setTimeout() function is called, thus
eliminating the previous object reference to an instantiated controlSpan() object. When using
the previous statement, the setTimeout() function is assimilated with the controlSpan() object,
thus partly solving the problem. Finally, a string is built using the objID argument to tell the
setTimeout() function which method it should call. This is done with the following property
from line 51 of listing G.2:

this.objID = objID + “.begin()”;

And assigned to the setTimeout() function on line 84 in this manner:

this.TimerVar = this.Timer(this.objID, this.speed);

The preceding statement is what causes the code to be recursive, because the this.Timer calls
itself over and over again until it is told to stop.

You create as many instantiations of the controlSpan() object as you want, as long as you
specify the valid arguments. If you had a <H1> tag named “header1,” for instance, you would
use the following syntax to make an instantiation of the object:

var myheader1 = new controlSpan(header1, 1000, myColorArray, 0, “myheader1”)

In the following instantiation, you would have made an object called myheader1, given it a style
changing speed of 1,000 milliseconds, and specified the array myColorArray as the array that
will be used for displaying the different colors. You gave myheader1 a whichOption value of “0”
(meaning you want it to display different colors) and put in the string “myheader1” for the
objID argument, which is the name of the object.

Additionally, you can add more styles to the dispStyle() method, such as changing the size of
text to make it appear larger or smaller, and so on. To do this, you would add another condi-
tional statement that corresponds to a whichOption value for each dynamic style you want to
include. You add a style, for instance, that changes the size of the font, then you add a condi-
tional that states if whichOption = 2 then change the size of the text.

Furthermore, you can programatically control the properties of each object. If you want the
object to change styles instantly, for example, you set the appropriate property of the desired
object whenever a given event happens. A caution, though—if you want to switch back and
forth between blinking and color changing, you must specify a color array, and you cannot
leave that argument blank as was shown in the bold2 object instantiation.

Error Handling and Error Trapping
Unfortunately, error handling is one of the most overlooked processes in programming lan-
guages. Although this concept does not relate directly to any single component of Dynamic
HTML such as event bubbling, it is essential. Some browsers will support Dynamic HTML and
the additional components associated with them, such as scripting, and some will not.

This can cause a potential problem to browsers viewing your Dynamic HTML site. Most brows-
ers use truncation techniques that ignore anything the browser cannot understand. This is not

527

G
App

true, however, for browsers that support scripting languages and not Dynamic HTML. For
instance, how many times have you seen a web page that comes up with an “object not found”
error?

Generally, errors with programming languages can be handled in two ways: by careful, “se-
cure” programming code (error trapping), and by using built-in means to control errors. Such
means are specific to each programming language. VBScript, for instance, has strong support
in the language for error handling.

VBScript Error Handling If error handling is of utmost importance in your web project, then
VBScript is probably the language you should use. It provides two useful tools to accomplish
error handling:

The on error resume next statement

The err object

As you know from your understanding of objects, each object can have several properties,
methods, and events.

Although you can learn about the methods and properties of the err object and additional infor-
mation about the on error resume next statement from VBScript documentation, this section will
show a few examples of how to use these objects and statements.

The err object has two methods and five properties that contain information about errors that
occur when your script is running (at runtime). You need to use the on error resume next state-
ment to be able to ignore errors so that you can access the information they generate. The
following listings are used to demonstrate error handling using VBScript components.

Consider the following code:

<HTML>
<HEAD>
<TITLE>This page generates a runtime error</TITLE>
</HEAD>
<BODY>
<INPUT TYPE=”button” NAME=”btnClickMe”
 VALUE=”Click to change text box”>
<INPUT TYPE=”text” NAME=”txtWillChng”
 VALUE=””>
<SCRIPT LANGUAGE=”VBScript”>
sub btnClickMe_onClick()
txtWillChngg.value = “See I changed!”
end sub
</SCRIPT>
</BODY>

When this page is run, an error will be generated stating that an object called txtWillChngg is
required. This means the scripting interpreter cannot find the object (that is supposed to be the
text box). Now, any scripting programmer will most likely know what is going on; however, the
average user probably will not. What will the user know if this error pops up and the script
stops running? Now consider the following code:

Scripting Languages

528 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

<HTML>
<HEAD>
<TITLE>This page generates a runtime error</TITLE>
</HEAD>
<BODY>
<INPUT TYPE=”button” NAME=”btnClickMe”
 VALUE=”Click to change text box”>
<INPUT TYPE=”text” NAME=”txtWillChng”
 VALUE=””>
<SCRIPT LANGUAGE=”VBScript”>

sub btnClickMe_onClick()
‘ the statement below causes the script interpreter to
‘ ignore any runtime errors on the page
on error resume next

‘ below is not a valid object
txtWillChngg.value = “See I changed!”

‘here is our error handling conditional, checks to
‘see if there is actual an error
if err then
 select case err.number
 ‘ the number below corresponds to the error
 ‘ generated when an invalid object is accessed
 case 424
 strError = “An element or object on the” & chr(13) & _
 “page could not be accessed.” & chr(13) & _
 “Do you still wish to continue” & chr(13) & _
 “running scripts (Yes) or “ & chr(13) & _
 “exit the part of the program” & chr(13) & _
 “that caused this error (No)?”
 end select
 ‘ here is a message box that informs the user an error occurs
 x = msgBox(strError,20,”One or more errors have occurred”)
 ‘ this determines what to do based on what the user specified
 ‘ in the message box
 select case x
 case 6 ‘ when the user clicks Yes
 case 7 ‘ when the user clicks No
 exit sub
 case else ‘ to be safe
 exit sub
 end select
end if
end sub

</SCRIPT>
</BODY>

As you may have noticed, the error handling is robust in the preceding example. Many inter-
esting features belong to this error handling routine. First, examine the statement that enables
you to perform all the error handling:

on error resume next

529

G
App

This statement enables the scripting interpreter to ignore all runtime errors generated by the
script. Additionally, it stores all the information about the would-be-fatal error in the err object.
This includes a not very informative description, an error number that corresponds to the
description, and other miscellaneous information.

Now, examine the conditional statement, which initiates the error handling:

if err then
...
end if

The script checks to see if an error was actually generated, then proceeds with identifying the
error using the select case statement with err.number property as the test case. If the number
matches a number that the routine covers, then a string will be generated and used with the
message box telling the user in a more descriptive manner which error actually occurred.
Then the option of what to do with the remaining script is left up to the user.

This listing shows a general use of error handling through scripting. If you want more robust
error handling in your statements, you should use error handling in all your subroutines and in
your main program. The primary reason for this is that all the information in the err object is
reset every time a subroutine or function is called or when the scripting interpreter comes
across another on error resume next statement.

For optimal efficiency, you should put most of the code in a special error-handling function,
which returns the value of what the user chose for the message box. A resident select case
statement could be in each subroutine to determine how to deal with the error, and this could
allow for special cases, as well. Listing G.3 shows how to set up such a function.

Listing G.3 A Complete Error Handling Application

01. <HTML>
02. <HEAD>
03. <TITLE>This page generates a runtime error</TITLE>
04. </HEAD>
05. <BODY>
06. <INPUT TYPE=”button” NAME=”btnClickMe”
07. VALUE=”Click to change text box”>
08. <INPUT TYPE=”text” NAME=”txtWillChng”
09. VALUE=””>
10. <SCRIPT LANGUAGE=”VBScript”>
11.
12. sub btnClickMe_onClick()
13. ‘ the statement below causes the script interpreter to
14. ‘ ignore any runtime errors on the page
15. on error resume next
16. ‘ below is not a valid object
17. txtWillChngg.value = “See I changed!”
18. ‘here is our error handling conditional, checks to
19. ‘see if there is actual an error then calls a function
20. if err then
21. lngMyErr = lngProcessError(err)

continues

Scripting Languages

530 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

22. select case lngMyErr
23. case 6 ‘ when the user clicks Yes
24. ‘ just continue with flow
25. case 7 ‘ when the user clicks No
26. exit sub
27. case else ‘ to be safe
28. exit sub
29. end select
30. end if
31. end sub
32.
33. function lngProcessError(objError)
34. select case objError.number
35. case 5 ‘ error handling for invalid procedure call
36. case 11 ‘ error handling for divide by zero
37. case 13 ‘ type mismatch
38. case 16 ‘ expression too complex
39. case 380 ‘ invalid property value
40. case 424 ‘ error handling for object required
41. strError = “An element or object on the” & chr(13) & _
42. “page could not be accessed.” & chr(13) & _
43. “Do you still wish to continue” & chr(13) & _
44. “running scripts (Yes) or “ & chr(13) & _
45. “exit the part of the program” & chr(13) & _
46. “that caused this error (No)?”
47. end select
48. ‘ here is a message box that informs the user an error occurs
49. lngProcessError = msgBox(strError, 20, _
50. “One or more errors have occurred”)
51. end function
52. </SCRIPT>
53. </BODY>

The lngProcessError()function (line 33) now contains all the code for handling the different
errors that may occur. The value that lngProcessError() returns corresponds to which button
(Yes or No) the user clicked; then this option is handled by the select case statement resident in
the Sub procedure, which called the function. In this case, the Sub procedure is the event
handler for the btnClickMe button.

VBScript also provides the means for error trapping—the process of knowing an error might
occur and dealing with it before it happens. You can trap errors in a variety of ways; if you are
accepting input for dividing two numbers for some purpose, for instance, and the user can
possibly enter zero for the denominator, you can check to see if it is zero and inform the user,
thus avoiding the “division by zero” error. You also use error trapping for validation. Suppose
you require a user to enter a number in an input box, and this is the only input you want to
accept; however, the user enters a letter. You can trap this by using the IsNumeric() function as
shown in the following code.

Listing G.3 Continued

531

G
App

Sub txtWillChng_onChange()
 if IsNumeric(txtWillChng.value) = false then
 window.status = “This is not a number”-
 txtWillChng.value = “”
 end if
end sub

Every time the user types in something that is not a number (a letter, for instance) and then
leaves the text box, he or she will be informed that what they entered isn’t valid data.

All in all, VBScript provides more versatile methods for error handling than with JavaScript.
The err object and the on error resume next statement, and with the various forms of error
trapping are all more versatile then JavaScript.

JavaScript Error Trapping JavaScript has no internal support for error handling, so the only
way you can deal with errors that might occur in your scripts is through error trapping. You
are familiar with the process of error trapping so far. JavaScript has some internal functions
and methods belonging to objects, such as the math object, and elsewhere that will enable you
to trap for many errors. Consider the JavaScript version of the VBScript code in listing G.3:

<HTML>
<HEAD>
<TITLE>This page generates a runtime error</TITLE>
</HEAD>
<BODY>
<INPUT TYPE=”text” NAME=”txtWillChng”
 VALUE=””>
<SCRIPT FOR=”txtWillChng” EVENT=”onchange”>
//event handler for the change event of the
//txtWillChng tag
if (isNaN(txtWillChng.value))
{
 window.status = “Not a valid number”;
 txtWillChng.value = “”;
}
</SCRIPT>
</BODY>

As you can see, the JavaScript isNaN() function determines if the value entered for the text box
is not a number, which is opposite to the VBScript IsNumeric() function that determines if a
number was entered. Click event is fired for the text box called txtWillChng when the user
leaves the text box. You can trap most of the errors in JavaScript much in the same way as you
would VBScript.

An event that can be handled by either JavaScript or VBScript is the onerror() event, which
enables you to access some information an error might generate, thus providing more

detailed feedback to the user if an error occurs. This event, however, provides no means to stop the
error, and the standard error window will occur despite the handling of this event. ■

N O T E

Scripting Languages

532 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

Optimizing Scripting Syntax
This section deals with the significance of the different ways you specify scripts on your page.
This includes the specification of scripting blocks and the location of external scripts that will
be used inline. This sometimes becomes handy when you are working with multipart projects
or it is just too cumbersome to include all the text in the document itself. This section shows
you how to call external scripting files from your HTML document.

Scripting in the Header and Body Sections The first thing to consider is that a big dif fer-
ence exists between placing scripting blocks in the header section (encapsulated in the
<HEAD> tag) and in the body section (encapsulated in the <BODY> tag). First, any variables,
functions, objects, or Sub procedures that you want to be global to your web page—and to
other pages within the same browser window—should be placed within a scripting block in the
header section. Because the header section initializes before any other scripts on the page, you
can declare important constants, Sub procedures, and other types of data to use on the page
with your event handlers and other forms of scripting.

Second, although you can make a script global by using a scripting block inside the body, it
only becomes global when the scripting interpreter reads it, which means if a script needs to
access that variable before it is created, it might not be available. Functions and Sub proce-
dures can be declared in either the head or the body and are initialized when the page is
loaded because the scripting interpreter executes functions and Sub procedures when they are
called upon. All event handlers and references to object properties and events should be de-
clared in the body section, unless your page consists of a collection of frames specified by
<FRAMESET>. In that case, all scripting must be done in the header section.

Specifying External Scripts Throughout this entire book, all scripts have been included
within the page. But what if the script is very large, and placing the entire script inside an
HTML document becomes a daunting task? You can specify the location of external script files
and use them inline through the SRC attribute with the <SCRIPT> tag, much like what is
shown in the following snippet of code:

<SCRIPT LANGUAGE=”Some_ScriptingLanguage” SRC=”SomeScriptingFile”></SCRIPT>

The LANGUAGE attribute functions the same as always; it specifies which scripting language
you will use with the scripting block. The SRC attribute, however, specifies the location of a file
that contains the script that will be used within the context of this scripting block. The path to
this file can be a relative or absolute URL. The convention for naming this file should be the
name of the file with a .vbs extension for a VBScript file or a .js extension for a JavaScript file. If
you wanted to place all the components that make up the controlSpan() object of listing G.2 in
an external file and use inline scripting to contain your color arrays and object instances, you
would take the object function and all its methods, place them in a standard text file, and call it
controlspan.js. The code to access this file would resemble the following line of code:

<SCRIPT LANGUAGE=”JavaScript” SRC=”controlspan.js”></SCRIPT>

In another scripting block, you would place all your instantiations of the controlSpan() object.
However, it is necessary that you define external scripts before you create other objects or

533

G
App

scripts that are dependant on that external script. As a general rule, you should make your
external scripts reliant upon nothing so, no matter where or how they are used, they can be
used anywhere, making them more portable and easier to maintain and update.

When using an SRC attribute within a scripting block, the code contained within the block
will be ignored. ■

Using Visual Effects in Dynamic HTML
If scripting is the lifeblood of Dynamic HTML, creating and deploying the numerous Dynamic
HTML visual effects is the central nervous system. It is one of the most noticeable and readily
available changes from previous versions of HTML. As you have seen through the many ex-
amples in this book, visual effects can be as simple as changing the color of text to creating
your own transitions.

This section shows you how to accomplish many visual effects through the use of several
graphics filters provided by CSS and through the DirectDraw API, which is exposed to Dy-
namic HTML and web pages through four ActiveX Controls (path control, sprite control, struc-
tured graphics control, and sequencer control). With these ActiveX Controls, you can create
numerous visual effects ranging from simple animations and other effects on elements in an
HTML document, to three-dimensional animations complete with depth, lighting, and fully
controllable geometry.

The following basic example demonstrates the different components of the DirectDraw API.
This example demonstrates the power behind using the DirectDraw API in conjunction with
Dynamic HTML.

Using CSS
In this book, you have already witnessed that CSS provides a dramatic increase in the layout
and positioning of the items on your web page, precision control over how elements are ren-
dered, and the robust interface CSS provides to other components of Dynamic HTML, such as
scripting. In addition to these features, Microsoft’s additions to CSS also provide a number of
filtering effects that you can apply to the elements in your page.

In general, a filter is some process that modifies and enhances the qualities of the elements on
a web page, such as text or graphics. You have seen how these filters work on images, but they
have a different effect on text. Using script-controlled processes, especially those of a recursive
nature, can provide some pretty incredible effects for your web pages. You can, for example,
make glowing text on the page, filter out one color, reverse text and images, and so on. The
listing that is provided in this section shows you how to utilize multiple filters on any element.

Listing G.4 provides an interface that enables you to examine all the filters Dynamic HTML
provides through CSS on any element, whether it is text or graphics. Figure G.2 shows this
interface.

N O T E

Using Visual Effects in Dynamic HTML

534 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

Listing G.4 The Interface and Additional Code for the Filter Generator
(filwiz.htm)

01. <HTML>
02. <HEAD>
03. <TITLE>Testing Filters Example</TITLE>
04. <STYLE>
05. .myclassb {color: white; background-color: floralwhite;
06. position: absolute;
07. width: 300; height: 300; overflow: scroll}
08. .myclassx {color: #ADD8E6; background-color: lightblue;
09. position: absolute;
10. width: 300; height: 300;}
11. .myclassr {background-color: darkred ; color: #CD5C5C ;
12. position: absolute; left: 320;
13. width: 250; height: 300;}
14.
15. .myclassi {background-color: cornsilk;
16. position: absolute; top: 320;
17. width: 560; height: 100;}
18.
19. .myinfo {background-color: #B22222; height: 130; width: 120;
20. position: absolute; color: red;}
21. .labela {font-size: 14pt}
22. .labelb {color: blue;
23. width:250; height: 250;
24. font-size: 24pt; left: 10}
25.
26. </STYLE>
27. </HEAD>
28.
29. <BODY BGCOLOR=”darkblue”>
30. <DIV id=”div1" CLASS=”myclassb” >
31.
32. The text or graphics you enter will be filtered
33.
34. </DIV>
35.
36. <DIV id=”div2" CLASS=”myclassr”>
37. <H2 ALIGN=”Center”>Filter Generator</H2>
38. Place text here:

39. <INPUT TYPE=”text” SIZE=”30" ID=”textinput”>
40. Location of graphic:

41. <INPUT TYPE=”text” SIZE=”30" ID=”grapinput” VALUE=” “>
42. <HR>
43. <SELECT id=”selfilt” MULTIPLE>
44. <OPTION VALUE=”FlipV”>Flip Vertical
45. <OPTION VALUE=”FlipH”>Flip Horizontal
46. <OPTION VALUE=”Glow(color=#FF0000,strength=5)”>Glow
47. <OPTION VALUE=”Shadow(color=#FFFFF, direction=225)”>Shadow
48. <OPTION VALUE=”Gray”>Grayscale
49. <OPTION VALUE=”Invert”>Invert
50. <OPTION VALUE=”Blur(add=0,direction = 0, strength = 3)”>Blur
51. <OPTION VALUE=”DropShadow(color=#0000FF,offx=4,offy=–4)”>Drop Shadow
52. <OPTION VALUE=”Xray”>X-Ray

535

G
App

53. </SELECT>
54. <SPAN CLASS=”myinfo” id=”params”
55. TITLE=”All color values should be in the form of #RRGGBB”>
56. Select A filter!
57.
58. <HR>
59. <INPUT TYPE=”button” id=”appfilt” VALUE=”Apply Filter”
➥onclick=”initFilter(selfilt)”>

60. <INPUT TYPE=”button” id=”clearall” VALUE=”Restore”
➥onclick=”restFilter(changetxt)”>
61. </DIV>
62.
63. <DIV id=”div3" CLASS=”myclassi”
64. TITLE=”When you generate a filter for the text you specify, the CSS
65. code corresponding to the filters is displayed here
66. this works best with SPAN and DIV elements”>
67. </DIV>
68.
69.
70.
71. <SCRIPT LANGUAGE=”JavaScript” SRC=”padprog.js”>
72. //code generating the filter
73. </SCRIPT>
74.
75.
76. </SCRIPT>
77.
78. <SCRIPT LANGUAGE=”JavaScript” FOR=”selfilt” EVENT=”onchange()”>
79. //code for handling which option was clicked for the select box
80. myindex = selfilt.selectedIndex;
81. var gsstring = ‘Color: <INPUT TYPE=”text” id=”gcolor” size=”7">
’;
82. var strev = ‘<INPUT TYPE=”button” Value=”Apply”
onclick=”eval(str0);udv()”>’;
83. var strsdir = ‘Direction: <INPUT TYPE=”text” id=”sdir” size=”3">
’;
84. var strgstr = ‘Strength: <INPUT TYPE=”text” id=”gstr” size=”3">
’;
85.
86. if(myindex == 0 | | myindex == 1 | |
87. myindex == 4 | | myindex == 5 | | myindex == 8)
88. {
89. //code for general filters that require no arguments
90. params.innerText = “No Additional attributes needed”;
91. }
92. if(myindex == 2)
93. {
94. //For glow filter
95. str0 = ‘selfilt.options(2).value = “Glow(color=”+gcolor.value+”,
➥strength=”+gstr.value+”)”’;
96. params.innerHTML = gsstring + strgstr + strev;
97. }
98. if(myindex == 3)
99. {
100. //For Shadow filter
101. str0 = ‘selfilt.options(3).value=”Shadow(color=”+gcolor.value+”,
➥direction=”+sdir.value+”)”’;
102. params.innerHTML = gsstring + strsdir + strev;

continues

Using Visual Effects in Dynamic HTML

536 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

103.
104. }
105. if(myindex == 6)
106. {
107. //For blur filter
108. str0 = ‘selfilt.options(6).value=”Blur(add=”+addn.value+”,
➥direction=”+sdir.value+”,strength=”+gstr.value+”)”’;
109. str2 = ‘Add: <INPUT TYPE=”text” id=”addn” size=”2">
’;
110. params.innerHTML = str2 + strsdir + strgstr + strev;
111.
112. }
113.
114. if(myindex == 7)
115. {
116. //For Drop Shadow filter
117. str0 = ‘selfilt.options(7).value=”Dropshadow(color=”+gcolor.value+”,
➥offx=”+doffx.value+”,offy=”+doffy.value+”)”’;
118. str2 = ‘X-Offset: <INPUT TYPE=”text” id=”doffx” size=”3">
’;
119. str3 = ‘Y-Offset: <INPUT TYPE=”text” id=”doffy” size=”3">
’;
120. params.innerHTML = gsstring + str2 + str3 + strev;
121.
122. }
123. //places the code necessary in div3 to use in a stylesheet def
124. div3.innerText = selfilt.options(myindex).value;
125. </SCRIPT>
126. </BODY>
127. </HTML>

Listing G.4 Continued

FIG. G.2
An interface to specify
what filters to apply on
text or graphics.

537

G
App

Listing G.5, padprog.js, is the main program used to generate the filter on the text or graphics
you specify. padprog.js handles all the communication in the program, such as when you select
different filters and so on, and it is responsible for creating the code you use to specify one or
multiple filters.

Listing G.5 A Filter Generation Program (padprog.js)

01. function initFilter(objSelfilt)
02. {
03. //main procedure for handling everything involved with filtering
04. //process
05. var imageloc = new String();
06. var strFilter = buildFilter(objSelfilt);
07.
08.
09. //here the string that specifies filters will be created
10. imageloc = getimage(grapinput);
11.
12.
13. //here the text in changetxt changes (actually, the SPAN tag)
14. changetxt.innerHTML = textinput.value + imageloc
15.
16. //changetxt.innerText = textinput.value;
17. //here everything is applied
18. changetxt.style.filter = strFilter;
19. div3.innerText = “SOME_ELEMENT { filter:” + strFilter + “;}”;
20.
21. }
22.
23. function buildFilter(objSelfilt)
24. {
25. //checks which options are selected then builds the string
26. var intSelindex = objSelfilt.length;
27. var strmystring = new String();
28. for(i=0; i<intSelindex; i++)
29. {
30. if(objSelfilt.options(i).selected == true)
31. {
32. strmystring += objSelfilt.options(i).value + “ “;
33. }
34. }
35. return strmystring;
36. }
37.
38.
39. function getimage(objgrp)
40. {
41. var strmystring = objgrp.value;
42. if(strmystring.length > 4)
43. {
44. return imageloc = “ ”;
45. }
46. else

continues

Using Visual Effects in Dynamic HTML

538 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

47. {return “”;}
48.
49. }
50.
51. function restFilter(objfilt)
52. {
53.
54. objfilt.style.filter=” “;
55.
56.
57. }
58. function udv()
59. {
60. div3.innerText = selfilt.options(myindex).value;
61. }

Several important aspects of listings G.4 and G.5 should be considered, specifically:

■ The primary interface constructed from several <DIV> tags that use positioning attrib-
utes, background, and foreground colors.

■ The intrinsic control interface found in the second <DIV> element (named div2) provides
an efficient way to choose which filters to apply on text or graphics. You can enter the
location of the graphic file and enter your own text with HTML markup.

■ The scripting involved with the page, which is found in two sections: the event handler
for the element named selfilt and the script found in the file padprog.js, which applies
filter settings for text or graphics you specify.

A large number of coding concepts and procedures are included in listings G.4 and G.5. The
basic purpose of the program is to let the user enter some text and/or specify a graphics file,
then observe the effects the different filters have on the graphics and text.

This is not all the program does, however. The program enables you to customize each filter
that is supported. Figure G.3 shows you an interface for entering parameters for the glow filter.
In addition, the <DIV> element named div3 contains the default information for the filter you
have selected. When you enter different settings for the filters (these settings correspond with
those mentioned for each filter in Chapter 15, “Multimedia Filters and ActiveX Controls”) and
click the Apply button (not Apply Filter), the filter settings are updated in div3.

When you have selected which filters you want to apply (this is accomplished by selecting
multiple filters), enter the text or graphics you want to filter and click the Apply Filter button;
the filters are then applied to the text and graphics. After clicking the Apply Filter button, the
complete code for specifying this filter as a CSS definition is displayed in the <DIV> element
called div3. You can then cut and paste this code into your own HTML document to use with
your text.

Listing G.5 Continued

539

G
App

The following exercise is provided as a quick tutorial to acquaint you with the filtering
program.

1. Type in both files and name them as shown in the headers.

2. Launch the file named filwiz.htm in Internet Explorer 4.0.

3. In the text box immediately under Place Text Here, type This is a test for filters.

4. Specify the location of a graphic if you have one available.

5. In the list box, click the Flip Vertical option. Notice how the text to the right changes.

6. Click the Glow option. Notice how the text changes again, and you see two text boxes
and a button. In the Color:text box, type #0F0A0C and in the Strength:text box, type 6.

7. Click the Apply button under the text boxes. Notice how the text in the lower-left corner
changes to match the values you entered.

8. While pressing the Ctrl key, click the Flip Vertical option.

9. After both of these options are selected, click the Apply Filter button. Two things
happen. First, the graphics (if specified) and the text are displayed to the left. Then, the
code for applying this filter is displayed in the lower-left corner. You can take this code
and use it with a DIV or SPAN element, and it will do the exact same thing as you
displayed. Figure G.4 illustrates the results of this exercise.

FIG. G.3
You can enter settings
for the glow attribute.

Using Visual Effects in Dynamic HTML

540 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

Now it is time for you to examine some aspects of the code. What you should be particularly
concerned with in this example is listing G.5 (padprog.js). This is the program that builds the
filter using a string and sets the style.filter property of the tag named changetxt to this
string. The main function, initFilter()(line 1), is put into action when you click on the Apply
Filter button. After the initFilter() function is activated, the buildFilter()(line 23) function is
called, which determines what options in the Select box are selected. The values of these op-
tions are the filters that will be used in making your filter string. Every time buildFilter() finds
an option that a user has selected, it concatenates the options value to the string, thus building
the filter. To wrap up the code, the changetxt.style.filter property is set to the string created in
buildFilter(), then the code used to define this filter or group of filters through CSS is dis-
played in the DIV element, div3.

As mentioned previously, the code that was originally part of filwiz.htm is used to build the
interface that you use to specify the parameters of the different filters. It is a basic interface,
and is nowhere near complete. Its minimal functionality, however, provides more than enough
to demonstrate the versatility of filters. Some filters have been excluded, including the chroma
filter, all lighting filters, and alpha transparency. You can add these, if you like, by adding an
additional <OPTION> tag to the selfilt select box and entering a value, which is the filter code
for that filter effect. Then you add the necessary code in the onchange event handler, which is
at the bottom of filwiz.htm. You need to add the <OPTION> tag at the very end of the current
list of option tags so you do not disturb the index order. In this way, you can easily specify
additional filters with a minimal amount of coding.

The following listing is the VBScript version of padprog.htm for you VBScript-savvy program-
mers.

FIG. G.4
Results of the preceding
exercise.

541

G
App

Listing G.6 The VBScript Version of padprog.js (padprogvb.htm)

01. q = chr(34)
02.
03.
04. sub initFilter(objSelFilt)
05. ‘main sub routine
06. dim strImageloc, strFilter
07. strImageloc = “ “
08. strFilter = buildFilter(objSelFilt)
09. strImageloc = getImage(grapinput)
10. changetxt.innerHTML = textinput.value & “
” & strImageloc
11. changetxt.style.filter = strFilter
12. end sub
13.
14. function buildFilter(objSelFilt)
15. ‘checks for filters then make them part of the string
16. for i = 0 to (objSelFilt.length –1)
17. if objSelFilt.options(i).selected = True then
18. buildFilter = buildFilter & _
19. objSelFilt.options(i).value & “ “
20. end if
21. next
22. end function
23.
24. function getImage(grapinput)
25. ‘checks for an image, then passes the HTML back to
26. ‘make an image tag
27. if len(grapinput.value) > 4 then
28. getImage = “”
29. else
30. getImage = “”
31. end if
32. end function
33.
34. function restFilter(changetxt)
35. changetxt.style.filter = “ “
36.
37. end function

Listing G.6 is used to replace padprog.js in the original listing only. The interface for changing
the values of the parameters of different filters will still be JavaScript because the methods you
would use to accomplish the interface already established with JavaScript would be radically
different. Listings G.5 and G.6 are almost identical, line by line; however, you will notice some
minor differences. The most obvious difference in the VBScript version is that the + character
for string concatenation is replaced by the & character. The + character still works in VBScript;
however, this character exhibits strange behavior when used with numeric literal values.

The VBScript conversion is not yet complete. You must modify and replace a few lines of code
in filwiz.htm. This includes modifying the function calls to the appropriate language and chang-
ing the scripting block to VBScript instead of JavaScript. When you come across the following
lines:

Using Visual Effects in Dynamic HTML

542 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

<INPUT TYPE=”button” id=”appfilt” VALUE=”Apply Filter”
➥onclick=”initFilter(selfilt)”>

<INPUT TYPE=”button” id=”clearall” VALUE=”Restore”
➥onclick=”restFilter(changetxt)”>

Replace them with:

<INPUT TYPE=”button” id=”appfilt” VALUE=”Apply Filter” onclick=”VBScript:
➥initFilter(selfilt)”>

<INPUT TYPE=”button” id=”clearall” VALUE=”Restore” onclick=”VBScript:
➥restFilter(changetxt)”>

This enables you to specify that VBScript will be the language used when the initFilter() (line
1) and restFilter() (line 34) functions are called for the click event of their corresponding ele-
ment. These functions are both contained, as you remember in the padprogvb.vbs file. One
more minor thing you have to do is insert these lines of code near the end of your document in
filwizvb.htm:

<SCRIPT LANGUAGE=”JavaScript”>
function udv()
{
div3.innerText = selfilt.options(myindex).value;
}
</SCRIPT>

This function is required by the filter-input interface and was included along with padprog.js,
but because you are using a VBScript file, this function has to be specified inline.

ActiveX Controls and Dynamic HTML
A myriad of ActiveX Controls exist that enable you to fully harness the power of Dynamic
HTML. Although an entire book can be written on how to use the outstanding DirectX Con-
trols included with Internet Explorer 4.0, this chapter presents a simplistic, yet interesting,
example of the DirectX functionality. Listing G.7 provides this example. A simple matrix design
is created using the Structured Graphics Control. The following listing is a simple, yet attrac-
tive, demonstration of the DirectDraw collection of ActiveX Controls. Figure G.5 shows the
output from this listing.

Listing G.7 A Simple Demonstration of the Structured Graphics Control

01. df<HTML><HEAD><TITLE>Demonstration of ArcDegrees subroutine</TITLE></HEAD>
02.
03. <BODY>
04.
05. <OBJECT id=”MyPolygon”
06. CLASSID=”CLSID:369303C2-D7AC-11d0-89D5-00A0C90833E6"
07. STYLE=”WIDTH:450;HEIGHT:450;ZINDEX:1;”>
08. <PARAM NAME=”Line0001" VALUE=”SetFillColor(0,255,255)”>
09. <PARAM NAME=”Line0002" VALUE=”Polygon(4, –128,–128, 128,–128, 128,128,
➥–128,128, 0)”>
10. <PARAM NAME=”Line0003" VALUE=”SetFillColor(0,255,240)”>

543

G
App

11. <PARAM NAME=”Line0004" VALUE=”Polygon(4, 64,–128, 128,64, –64,128, –128,–64,
➥0)”>
12. <PARAM NAME=”Line0005" VALUE=”SetFillColor(0,255,225)”>
13. <PARAM NAME=”Line0006" VALUE=”Polygon(4, 16,–112, 112,16, –16,112, –112,–16,
➥0)”>
14. <PARAM NAME=”Line0007" VALUE=”SetFillColor(0,255,210)”>
15. <PARAM NAME=”Line0008" VALUE=”Polygon(4, 88,–16, 16,88, –88,16, –16,–88, 0)”>
16. <PARAM NAME=”Line0009" VALUE=”SetFillColor(0,255,195)”>
17. <PARAM NAME=”Line0010" VALUE=”Polygon(4, 62,–34, 34,62, –62,34, –34,–62, 0)”>
18. <PARAM NAME=”Line0011" VALUE=”SetFillColor(0,255,180)”>
19. <PARAM NAME=”Line0012" VALUE=”Polygon(4, 62,–34, 34,62, –62,34, –34,–62, 0)”>
20. <PARAM NAME=”Line0013" VALUE=”SetFillColor(0,255,165)”>
21. <PARAM NAME=”Line0014" VALUE=”Polygon(4, 38,–41, 41,38, –38,41, –41,–38, 0)”>
22. <PARAM NAME=”Line0015" VALUE=”SetFillColor(0,255,150)”>
23. <PARAM NAME=”Line0016" VALUE=”Polygon(4, 38,–41, 41,38, –38,41, –41,–38, 0)”>
24. <PARAM NAME=”Line0017" VALUE=”SetFillColor(0,255,135)”>
25. <PARAM NAME=”Line0018" VALUE=”Polygon(4, 18,–40, 40,18, –18,40, –40,–18, 0)”>
26. <PARAM NAME=”Line0019" VALUE=”SetFillColor(0,255,120)”>
27. <PARAM NAME=”Line0020" VALUE=”Polygon(4, 3,–34, 34,3, –3,34, –34,–3, 0)”>
28. <PARAM NAME=”Line0021" VALUE=”SetFillColor(0,255,105)”>
29. <PARAM NAME=”Line0022" VALUE=”Polygon(4, 26,–6, 6,26, –26,6, –6,–26, 0)”>
30. <PARAM NAME=”Line0023" VALUE=”SetFillColor(0,255,90)”>
31. <PARAM NAME=”Line0024" VALUE=”Polygon(4, 18,–11, 11,18, –18,11, –11,–18, 0)”>
32. </OBJECT>
33. </BODY>
34. </HTML>

FIG. G.5
The matrix that
is produced by
listing G.7.

ActiveX Controls and Dynamic HTML

544 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

You only need to consider a few minor things in this example. First, an instance of the Struc-
tured Graphics ActiveX Control (SGC) is inserted on the page (line 5). This is identifiable by
the <OBJECT> tag. The many <PARAM> tags (lines 8–31) associated with the Structured
Graphics Control may seem peculiar.

<PARAM> tags, of which 24 are nested within the control definition, initialize and set values of
public properties of the ActiveX Control with which they are associated. In the 24 instances of
the <PARAM> tag found in listing G.7, this is a half-truth. These <PARAM> tags are specifying
properties, but they are what can be considered a “virtual” property, which only exists when
you need it. These properties are used for drawing various shapes, setting colors and fill pat-
terns of these shapes, and so on.

Each one of these properties is specified by a “Linexxxx” value for the NAME attribute of the
<PARAM> tag, starting from the value “Line0001.” As you can see, all the <PARAM> tags that
have odd-numbered “Linexxxx” values for the NAME attribute have something in common for
the VALUE attribute. These specific values are used to set up the ten squares you see in figure
G.5. Calling the Polygon method, which is part of the Structured Graphics Control, creates
these squares. All the even-numbered “Linexxxx” values specify the colors for these boxes.
Again, this listing was provided as a springboard for your future use with DirectDraw ActiveX
Controls. This example shows you how to create a relatively complex example with minimal
coding.

Finding Information About Your Document
Finding information about the elements contained in your document is critical for many uses in
Dynamic HTML. You have seen this importance in the chapters in Part V of this book, “Multi-
media and Dynamic HTML.” The example in listing G.8 is a diagnostic utility that examines
and categorizes the tags. The listing’s main importance does not rest in the application itself,
but in the methods used to extract and categorize this information. Listing G.8 takes the URL
of any HTML document and analyzes which tags are on the page, then categorizes those tags.
Categorizing tags enables the person using the application to know exactly how many tags are
on the page, and it also makes it plain to the user if a tag was typed wrong, and so forth.

As mentioned before, there are truly incredible things you can do with the DirectDraw API.
Some games, such as Microsoft’s Age of Empires and Monster Truck Madness 3D are based on
it. To learn more about the DirectDraw API and about DirectX, view the Internet Software
Developer’s Kit Internet Multimedia section at http://www.microsoft.com/msdn/sdk/
inetsdk/help/dxmedia/jaxa/default.htm.

Listing G.8 Web Page Diagnosis

01. df<HTML>
02. <HEAD>
03. <TITLE>Page analyzer</TITLE>
04. <SCRIPT>
05. var EleArray = new Array();

545

G
App

06. var EleNum = new Array();
07. var mycounter;
08. EleArray[0] = “ “;
09. EleNum[0] = 0;
10. </SCRIPT>
11. </HEAD>
12. <BODY>
13. <DIV STYLE=”position:absolute;top:0;left:0">
14. <IFRAME id=”placedoc” WIDTH=”400" HEIGHT=”400" SRC=””>
15. </IFRAME>
16. </DIV>
17. <DIV STYLE=”background-color: lightblue; position:absolute;top:0;
➥left:410;width:300;height:100">
18. Enter location of document: <INPUT id=”myloc” TYPE=”text” SIZE=”40">

19. <CENTER>
20. <INPUT TYPE=”button” VALUE=”Analyze” id=”buttonok” onclick=”testfunction()”>
21. </CENTER>
22.
23. </DIV>
24. <DIV STYLE=”background-color: mintcream; position: absolute; top:110;
➥left:410;width: 300; height: 250; overflow: scroll” id=”reporthere”>
25. </DIV>
26.
27. <SCRIPT LANGUAGE=”JavaScript”>
28. function testfunction()
29. {
30. mylocalURL = myloc.value;
31. placedoc.location = mylocalURL;
32.
33.
34. alert(placedoc.document.all.length)
35. analyze();
36. report();
37.
38.
39.
40.
41. }
42.
43. function analyze()
44. {
45. var objCurTagName = placedoc.document.all;
46. for(mycounter=0; mycounter < placedoc.document.all.length; ++mycounter)
47. {
48. for(i=0; EleArray[i] != null; i++)
49. {
50. //alert(i);
51. if(EleArray[i] == placedoc.document.all.item(mycounter).tagName)
52. {
53. ++EleNum[i];
54. }
55. else if(i == (EleArray.length – 1))
56. {
57. i++;
58. //alert(i);

continues

Finding Information About Your Document

546 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

59. EleArray[i] = placedoc.document.all.item(mycounter).tagName;
60. //alert(EleArray[i]);
61. EleNum[i] = 0;
62. ++EleNum[i];
63. }
64. }
65. }
66.
67.
68. }
69.
70. function report()
71. {
72. reporthere.innerHTML = “Reports for: “ + placedoc.location + “
”;
73.
74. for(j=1; j < EleArray.length; j++)
75. {
76. reporthere.innerHTML += EleArray[j] + “:” + EleNum[j] + “
”;
77.
78.
79.
80. }
81. }
82. </SCRIPT>
83. </BODY>
84. </HTML>

The preceding example is rather straightforward. The user specifies a location of a local docu-
ment; the program iterates throughout the entire document and informs the user which tags
are found on the page and how many of each tag. The algorithm created to do this is a little
complex and involves two loops. These loops are found in the analyze() function (line 43). The
outer loop in line 46:

for(mycounter=0; mycounter < placedoc.document.all.length; ++mycounter){}

scrolls through all the elements in the HTML document that the user entered inside of the text
box named myloc. These elements are accessed through the item() property of the all collec-
tion. To access each item, the mycounter variable references each index in the all.item() collec-
tion of the specified HTML document. The second loop in line 48:

for(i=0; EleArray[i] != null; i++)

accomplishes two things. First, it populates two arrays (EleArray[x] and EleNum[x]) that each
contain information about the tags and how many of each tag are in the page that is currently
loaded. EleArray[0] will usually contain the <HTML> tag, for instance, and EleNum[0] will
contain the quantity of that tag on a page (always 1). The code nested in this for loop also
checks to see if an element found in the specified document’s all.item() collection exists within
the array. If the element does not exist, the code allocates a new entry for that tag.

Listing G.8 Continued

547

G
App

The final part of this program prints out a report for the document that you specified. In this
report, the full path to the document is displayed (file://someplace-on-your-hdd) along with
each tag and the number of times each tag is on the page. Although the specifics of this algo-
rithm will not be discussed here, enough information has been given for you to dissect the
code for yourself. This program not only provides you with a handy diagnostic tool, but the
code used to manipulate the arrays is also useful. Sometimes using complex code that every
programmer should understand is an efficient way to accomplish different tasks such as add-
ing items to lists.

From Here…
This appendix provides a glimpse of the unique ways you can harness the powers of Dynamic
HTML technology. This appendix, combined with the other premium examples in Part VI,
“Real World Dynamic HTML,” of the book, will give you a strong grasp of Dynamic HTML so
that you can make the fullest use of this technology.

The techniques and examples shown in this appendix can be modified easily and used in many
other examples. This appendix provides the final road map in this book for you to fully under-
stand and utilize the power of Dynamic HTML.

From Here…

548 Appendix G Dynamic HTML Tips and Utilities

http://www.quecorp.com

549Appendix H Glossary

IV

H
App

Glossary

HA P P E N D I X

absolute positioning Specifying the position of elements on an HTML page in relation to
the window.

ActiveX Microsoft’s method of distributing components over the web.

Advanced Data Connector (ADC) A Data Source Object that ships with Internet Explorer
4.0, which allows data binding to remote sources of data.

applet A Java program that can run inside of a web page.

block A group of JavaScript statements.

Boolean A value that is either true or false.

Cascading Style Sheets (CSS) A W3C specification for defining layout and style elements
for HTML pages. The first official release is referred to as CSS1.

channel A subscription-based mechanism for delivering scheduled content updates.

Channel Definition Format (CDF) Microsoft’s file format for specifying channels that can
be pushed to users’ desktops dynamically.

clipping Defining a limited, viewable window for displaying elements.

collection A wrapper that enables objects to be grouped.

COM Microsoft’s Component Object Model, the foundation upon which ActiveX Controls are
built.

Common Gateway Interface (CGI) A standard web protocol for executing a program
through the web server and returning its output to the web browser.

conditional A point in a program at which the branch of program flow is controlled by a
logical expression.

container A CSS Positioning element that can be used to relatively position child elements.

cookie A file on the client machine used to store information about previous web page visits.

550 Appendix H Glossary

http://www.quecorp.com

CSS attribute Used synonymously with CSS value to specify the parameter for a CSS
property.

CSS Positioning (CSSP) Currently a W3C working draft for extensions to the CSS specifi-
cation to allow tighter control over positioning HTML elements. Implemented in Internet
Explorer 4.0.

CSS property An attribute used with style sheets to configure styles for a given selector.

CSS value The data to which CSS properties are set.

current record binding A data binding method by which one record from a data source is
retrieved at a time and bound to a series of data consumers.

data binding The process of connecting and automatically placing data into an HTML
element from a data source.

data consumer HTML elements that are bound to data source objects and are automatically
filled with data from those data sources.

Data Source Object (DSO) A type of ActiveX Control that provides data to data consumers.
Data Source Objects can retrieve data from just about any source of data, but RDBMSs and flat
text files are the most common places.

database server A storehouse of tabular data that can be accessed via a Data Source Object.

dynamic Microsoft defines dynamic as content that is alterable at load and runtime.

dynamic content Content in elements that is changed at runtime, such as text ranges.

Dynamic HTML (DHTML) A collection of technologies implemented in Internet Explorer
4.0, such as dynamic styles, dynamic content, CSS Positioning, the Dynamic HTML Object
Model, data binding, and Dynamic HTML multimedia—all controllable via scripting.

dynamic styles The capability to change the style property values of an element at runtime.

element An instance of an HTML tag in an HTML document.

event The notification triggered when an action is done that is being monitored.

event binding The connecting of events to event handlers.

event bubbling The passing of events up the HTML element hierarchy.

event handler A function that is bound to an event via event binding that responds to the
event.

field delimiters The character that separates fields in a Tabular Data Control data file.

form HTML code that enables user interface controls, such as edit boxes or list boxes, to be
placed on the HTML page.

function A group of statements that are referenced by a name and executed when the name
is called.

551Appendix H Glossary

IV

H
App

Hypertext Markup Language (HTML) A generic language for defining pages for the World
Wide Web.

Hypertext Transfer Protocol (HTTP) The communications protocol used to transfer web
pages from the server to the browser.

ID A CSS property used to assign a name to an element.

InetSDK Microsoft’s Software Development Kit for Internet client development.

integer A number that does not contain a decimal point (–3,–2,–1,0,1,2,3, and so on).

Java A programming language and runtime environment created by Sun Microsystems to
promote cross-platform compatibility and simplify application development.

JavaScript Netscape’s implementation of a scripting language that is loosely based on Java’s
syntax.

JScript Microsoft’s implementation of JavaScript in Internet Explorer.

layout The precise positioning of HTML elements on a page.

letter-spacing The amount of whitespace that appears between characters.

logical expression An expression that evaluates to true or false.

loop A programming construct that enables a statement or block to be repeated multiple
times.

method A function that is contained in an object.

multimedia filter A transformation, such as a blur or a light source, which can be applied to
an element.

multimedia transition An effect, such as a dissolve or a wipe, which can be applied to the
switching between two elements.

numerical expression An expression that evaluates to a number.

object A grouping of data and functions into one data structure.

object model The abstracting of the functionality of a program into objects that can be
accessed via a scripting language.

path A set of geometric coordinates used to specify where an object will move.

query A method by which data is requested from a database server.

recordset The part of a Data Source Object that enables traversal throughout the rows of
data available.

Relational Database Management System (RDBMS) A database server that uses the
Structured Query Language.

relative positioning Positioning elements in relation to their parent objects.

552 Appendix H Glossary

http://www.quecorp.com

repeated table binding The capability to bind a Data Source Object to a table, causing all
the rows available in that Data Source Object to automatically be placed in rows in that table.

RGB value A color specification that utilizes the primary colors of light (Red, Green, Blue).

round trip The process of the web browser asking for data from the web server and then
receiving it.

row delimiter The character that separates rows of data in a Tabular Data Control.

scalability The capability of a server to handle increasing amounts of traffic.

scaling Altering the dimensions of an image or element.

scripting language A computer language that runs inside of a web browser, which allows
the manipulation of elements on the page.

selectors The CSS equivalent of the HTML tags to which the style being defined will be
applied.

sorting Placing things in a specified order.

statement The smallest executable portion of code in a scripting language (usually a line).

string A sequence of characters. This definition is a string.

Structured Query Language (SQL) A language for performing database ser ver queries on
a Relational Database Management Server.

Tabular Data Control (TDC) A Dynamic HTML Data Source Control that provides data
specified in a static data file supplied via the web server.

text range A selection of characters that can be addressed as an object.

Uniform Resource Locator (URL) The WWW standard for identifying the location of
desired data on the web.

variable A named, temporary holding place for data.

Visual Basic, Scripting Edition (VBScript) Microsoft’s stripped-down version of Visual
Basic designed as a competitor to JavaScript.

word-spacing The amount of whitespace between words on a page.

World Wide Web Consortium (W3C) A group of industry developers and institutions
formed to oversee standards development for the World Wide Web.

Z-index The order in which elements are layered on a page.

553

Index

A
<A> tag, 428
abbreviations, units of

measurements (CSS property
values), 67

absolute positioning, 182,
193-197, 468, 549

height specification, 195
nesting elements, 195
rectangular flow area, 195
specifying coordinates, 199
width specification, 195

accessing
document objects

all collection, 133-134
anchors collection, 134
applets collection, 134
collections, 127
embeds collection, 135
filters collection, 135
forms collection, 134
frames collection, 135
images collection, 134
links collection, 135
plugins collection, 135
scripts collection, 135
styleSheets collection,

135-136
element objects, 118

methods, 120-121
properties, 118-120

length property from
collections, 116-117

accessKey (body object
property), 131

actions, event firing, 143
:active (pseudo class), 73, 466
activeElement (document object

property), 129
ActiveIE web site, 501
ActiveX, 549

Controls, 542-544
SGC (Structured Graphics

ActiveX Control), 544
DirectAnimation ActiveX

Controls, 333
Multimedia Controls, 283-287
objects, 333-334

Data Source Objects, 251
transitions, 290-297

adding
ActiveX objects, 333-334
color to text, 56
comments, 64-65
event handlers to elements, 150
filters to elements, 317-318

Chromakey Filter, 332
Drop Shadow Filter, 320-321
Flip Horizontal Filter,

321-322
Flip Vertical Filter, 322-323
Glow Filter, 331-332
Grayscale Filter, 323-324
Invert Filter, 324
Lights Filter, 325-327
Motion Blur Filter, 327-328
Opacity Filter, 328-329
Shadow Filter, 329-330
Wave Filter, 330-331
X-Ray Filter, 318-320

italic, 69-70
logic, Smashout Video game,

416-423
product view to online catalog,

393-394
pseudo classes to selectors, 73

<ADDRESS> tag, 429
aesthetics, 52-53
algorithms, HTML tag

identification, 546
ALIGN attribute, <HR> tag, 53
aligning

captions with images, 193-194
elements in browser window,

float property, 184
alinkColor (document object

property), 129
all collection (document object),

133-134, 495
all object, 113
Alpha Channel graphics, 30-31
Alpha Filter control, 287
altering web pages

after loading, 15-16
at runtime, 10 -11, 26-28

altKey (event object property),
126, 141, 154-155

ambient light, adding to
elements, 325-326

anchor links, disabling,
158-159

554

anchors collection (document
object), 134, 494

And (Boolean operator), 88
animating

ball (Smashout Video game),
409-411

elements, 209-213
path animation effects, 285
Smashout game, 408-416

APIs (Application Programming
Interfaces), DirectDraw
API, 544

appCodeName (navigator object
property), 125

appending pseudo classes to
selectors, 73

<APPLET> tag, 250, 429-430
applets, 549
applets collection (document

object), 134, 494
Application Programming

Interfaces, see APIs
applications

building, 33
online catalog, 378-383

resetting, 366-367
applying filters, 533-538

see also filters
appName (navigator object

property), 125
appVersion (navigator object

property), 125
<AREA> tag, 430
arguments

codestring, 94
string arguments, Listing 5.3, 94

arithmetic operators, specifying
in VBScript, 473

arrays, 83, 108
arrays (JavaScript), 104-105
assigning

colors to HTML pages
hexadecimal values, 69
natural language labels, 68
RGB values, 69

CSS property values, 67-70
color, 68-69
fonts, 69-70
measurement units, 67-68

events, see events, binding
functions

multiple styles to elements
classes, 71-72

element IDs, 72-73
global styles, 55
pseudo classes, 73-74
pseudo elements, 73-74

values to HTML tags, 53-54
attributes

BORDER, 258
CSS Positioning, 467-470
DATAFLD, 243-244
DATAFORMATAS, 244
DATAPAGESIZE, 244
DATASRC, 242-243, 258
font styles, specifying, 52, 168
HEIGHT, 258
HTML tags, assigning values,

53-54
ID, 258
language, 81
OVERFLOW, 359
WIDTH, 258

auto (property value), 199
automatic binding, VBScript

Special Syntax method,
152-153

axes, absolute positioning, 193

B
 tag, 430
back() method, history

object, 123
background (body object

property), 131
background (CSS property),

65-66, 458
background-attachment (CSS

property), 459
background-color (CSS

property), 459
background-image (CSS

property), 66, 459
background-position (CSS

property), 459
background-repeat (CSS

property), 459
backgrounds, 52-53
<BASE> tag, 430
<BASEFONT> tag, 431
basketball tutorial

court elements
layering with Z-indexing,

358
laying out, 357-362

court layout, creating scroll
box, 358-361

explanations, formatting,
361-362

functionalities, scripting,
363-367

hideObject() function,
constructing, 364-365

hideScreenCourt() function,
graying out elements, 365-366

highlight() function, icons
borders, 366

icons, formatting, 358-361
images, creating, 356-357
listings, 358-376
lowlight() function, icon

borders, 366
reset() function, resetting

applications, 366-367
scripting elements, 363
showobject() function,

constructing, 364-365
showScreenCourt() function,

graying out elements, 365-366
Berners-Lee, Tim, 36
bgColor (body object property),

131
bgColor (document object

property), 129
bgProperties (body object

property), 131
<BGSOUND> tag, 431
<BIG> tag, 431
binding, 145

data attributes
DATAFLD, 243-244
DATAFORMATAS, 244
DATAPAGESIZE, 244
DATASRC, 242-243

data binding, 15, 31-32
elements to data values, 242
functions, 149-153

element binding, 150
SCRIPT...FOR binding

method, 150-152
VBScript Special Syntax

binding method, 152-154
see also data binding

black-and-white rendering,
Grayscale Filter, 323-324

black-box architecture, 525
blending, 30-31
<BLINK> tag, 7, 36
<BLOCKQUOTE> tag, 432

anchors collection (document object)

555

blocks, 82, 549
brackets, 83
see also functions

blocks (JavaScript), 83
blur (body object property),

132
Blur Filter control, 287
body object, 131-133, 492

properties, 131-132
body section

defining style, 64
scripting syntax, 532

<BODY> tag, 432-433
Boolean operators, 88
Boolean properties, 86

altKey property, 141
ctrlKey property, 141
shiftKey property, 141

border (CSS property), 66, 460
BORDER attribute, 258
border-bottom (CSS property),

460
border-color (CSS property),

460
border-left (CSS property), 460
border-right (CSS property),

460
border-style (CSS property),

460
border-top (CSS property), 460
border-width (CSS property),

461
borders, 53

icons, 366
Bos, Bert, 77
bottomMargin (body object

property), 131
boundaries, defining for

containers, 185
Box In Transitions, 285, 293,

298
Box Out Transitions, 285, 293,

299
box properties (CSS), 66

 tag, 433
brackets, 83
branching, 97

for loops, 98-99
if and if...else statements, 97-98

VBScript, 478-479
while loops, 99-100

break statements, 100-101
browser cookies, 27
browser-safe hexadecimal

chart, 508-512
browsers

browser cookies, 27
configuring web pages, 26-27
CSS Positioning, 181-189
CSS syntax, 56
CSS-enabled, 57-58
event firing, 143
event handling, 143-149
events, 138-143

binding functions, 149-153
focus events, 138, 141-142
keyboard events, 138,

140-141
mouse events, 138-140
onabort event, 142-143
selection events, 141-142
state change events, 138,

142
fonts, selecting, 70
IE 4.0 (Internet Explorer 4.0),

80
Dynamic HTML Object

Model, 113
intrinsic controls, 134

Netscape Navigator, Dynamic
HTML Object Model, 113

selecting, 40-41
style sheets, importing, 59

bubbling, event bubbling, 23,
159-162

bufferDepth (screen object
property), 125

building
applications, 33

online catalog, 378-383
functions,

online catalog filtering,
386-387

product_onclick() function,
384

Smashout Video game arena,
403-407

built-in
functions, 93-94

returning values, 96
objects, 103

JavaScript Date object, 106
Burnham Brothers online

catalog, see online catalog
button (event object property),

126, 155

<BUTTON> tag, 433
buttons,

creating for online catalog, 392
Reset, 341, 348

C
caching, server-side data

binding, 235
calling methods

contains() method, 120-121
go() method (history object),

123-124
Reset() method, 384
TextRange object, 218

cancelBubble (event object
property), 126, 156

canceling event bubbling,
161-163

<CAPTION> tag, 433-434
captions, aligning with image,

193-194
Cartesian coordinate system

positioning elements with
z-index, 189

cascading, definition, 61-64
Cascading Style Sheets,

see CSS
Cascading Style Sheets,

 Level 1, see CSS1
catalogs, online catalog

boilerplate code, 378-379
building, 378-383
columns, sorting, 383-385
CSS display property, 392
data, filtering, 385-386
data binding, 393
data consumers, creating, 381
data sources

establishing, 380
specifying, 379

event handlers, assigning to
headers, 384

filtering, requirements, 386-387
specifying

data source, 379
table view, 381

categorizing
HTML tags, 544-547

<CENTER> tag, 434
centimeters (CSS property

measurement unit), 67

centimeters (CSS property measurement unit)

556

CGI (Common Gateway
Interface), 232

Perl, 236
server-side data binding,

232-233
disadvantages, 234-238

changing
variables, 91-93
web pages

after loading, 15-16
at runtime, 10 -11, 27-28

channels, 549
charset (document object

property), 130
CharSet property, 265
charts

browser-safe hexadecimal
chart, 508-512

tabular form data binding, 240
see also tables

Checkerboard Across
Transition, 286, 294, 305

Checkerboard Down Transition,
286, 294, 305-306

child tags, 64
Chroma Filter control, 287
Chromakey Filter, 332
Circle In Transition, 285, 293,

299-300
Circle Out Transition, 285,

293, 300-301
<CITE> tag, 434
classes, 71-72

assigning multiple, 71
pseudo classes, 466

CLASSID, TDC (Tabular Data
Control), 258

Classification properties
 (CSS), 67

display property, 67
list-styles property, 67

classifying CSS properties, 65
background properties, 65-66
box properties, 66
Classification properties, 67
color properties, 65-66
font properties, 65
text properties, 66
values, 67-70

ClassName, 118
className (body object

property), 131

clear (CSS property), 464
clear method (selection

object), 131
click (body object

property), 132
click and drag,

defining elements, 280
effects, 280-283

client-side data binding, 233
advantages, 238-240
comparing to server-side data

binding, 234-238
tabular data, 240

client/server communication,
37-38

clientHeight (body object
property), 131

clientWidth (body object
property), 131

clientX (event object
property), 126

clientY (event object
property), 126

clip (overflow property value),
187-188, 203

clip property, 204-205, 276
CSS Positioning, 469

clipping, 549
cm (CSS property measurement

unit), 67
code

basketball tutorial, final code,
367-375

boilerplate code, online catalog,
378-379

HTML, adding comments, 64-65
JavaScript

arrays, 104-105
blocks, 83
Booleans, 86
built-in functions, 93-94
built-in objects, 103
comments, 83-85
data, 85
expressions, 86
flow control, 97-101
functions, 93
logical expressions, 87-89
multiline comments, 84-85
null data, 86
numbers, 86
numerical expressions, 87
objects, 101-104
properties, 102-103

single-line comments, 84
statements, 83
strings, 85
syntax elements, 82-83
user-defined functions, 95-96
user-defined objects, 103-109
variables, 89

loops, continuing, 101
Pin the Tail on the Donkey,

final code, 349-353
Smashout Video game, final

code, 420-423
source code zip file, 505
while loops, 100

<CODE> tag, 434
codestring (JavaScript

argument), 94
<COL> tag, 434-435
<COLGROUP> tag, 435
collapsible outlines, 178-182

syntax, 179
three-level outlines, creating,

180-189
collections, 115-117

accessing elements, 115-116
all collection, 495
anchors collection, 494
applets collection, 494
DirectDraw collection (ActiveX

Controls), 542-543
document object, 127-135
document.all collection, 115
elements

methods, 120-121
properties, 118-120
returning, 118-121

embeds collection, 494
filters collection, 495
forms collection, 494
frames collection, 124, 488, 495
images collection, 494
links collection, 494
paragraphs, counting, 116-117
plugins collection, 495
properties, returning, 116-117
scripts collection, 495
styleSheets collection, 495

color properties (CSS), 65-66
colorDepth (screen object

property), 124
colors

adding to text, 56
browser-safe hexadecimal

chart, 508-512
constants, defining in VBScript,

481-482

CGI (Common Gateway Interface)

557

fonts, modifying, 171-173
hexadecimal color codes, 467
RGB color codes, 467
values, CSS properties, 68-69

columns
creating, 201-202
headers, creating, 380
online catalog, sorting, 383-385

commas, multiple selectors,
syntax, 58

comments (JavaScript), 83-85
adding, 64-65
HTML comments, 57-58
specifying in VBScript, 472-473

Common Gateway Interface,
see CGI

communication, client/server,
37-38

compareEndPoints()
method, 219

comparing
Dynamic HTML with static

HTML, 8-16
JavaScript and VBScript,

515-516
Netscape to Microsoft Dynamic

HTML, 37-39, 45-47
comparison operators, 88

specifying in VBScript, 474
complete (readyState property

value), 142
concatenation, VBScript, 541
conditional statements, 97

for loops, 98-99
if and if...else, 97-98
if...then...else statements,

478-479
while loops, 99-100

configuring parameters, Drop
Shadow Filter, 320

constants (VBScript), defining
color constants, 481-482
date format, 483
date/time, 482-483
string, 483-484

constructors, 525
arrays, 104-105

consumers, data consumers,
242, 247-250

<APPLET> tag, 250
<DIV> tag, 247
HTML data binding, 241-242
 tag, 249-250
<MARQUEE> tag, 249

<SELECT> tag, 249
 tag, 247-249

containers, 549
creating for absolute

positioning, 182-183
creating for relative

positioning, 184
height property, 184
positioning, 186-187
rectangular, defining, 202
scrolling, 187-188
width property, 184

containment hierarchies, event
bubbling, 159-162

canceling, 161-162
contains (body object

property), 132
contains() method, 120
content, web pages

altering, 10-11
 load time, 26-27

deleting, 221-222
continue statements, 100-101
continuing loops, 100-101
controlling transitions,

292-293
Controls

ActiveX, 542-544
Multimedia Controls,

 283-287
SGC (Structured Graphics

Control), 544
DirectAnimation ActiveX

Controls, 333
Multimedia

ActiveX objects, 333-334
Fills Control, 285
Filter Controls, 287-288
Oval Control, 284
Rect Control, 284
Rotate Control, 284
Scale Control, 284
scripting transitions, 292-295
transitions, 290-297
Translate Control, 284

online catalog, creating, 385-386
Oval Control, 284
Path Controls, 285
Structured Graphics Controls,

284-285
transitions, 285-286

cookie (document object
property), 129

cookieEnabled (navigator object
property), 126

cookies, 549
browser cookies, 27

coordinates, absolute
positioning, specifying, 193

core properties (Dynamic
HTML Object Model),
elements, 118

count() function, 342-343,
345-346

counter variables, 99
counters, incrementing, 100
counting paragraphs, 116-117
createRange method (selection

object), 131
createTextRange (body object

property), 132
createTextRange() method, 218
creating

animation effects, 29-30, 209-213
arrays, 104-105
buttons for online catalog, 392
collapsible outlines, 178-182
columns, 201-202
containers

absolute positioning,
182-183

relative positioning, 184
controls for online catalog,

385-386
data-aware objects, 32
<DIV> element, 291-292
Dynamic fonts, 168-172
filter generator, 533-536
games, 28

Peek-A-Boo, 174-178
global scripts, 532
headers, 383
HTML objects, 15
indexes, 27
layers, 205-209
layouts with absolute

positioning, 193-197
online catalog, 378-383

data consumer, 381
position containers, 187
repeating tables, 245
styles with classes, 71-72
styles with element IDs, 72-73
styles with pseudo classes,

 73-74
styles with pseudo elements,

73-74
tables, 14, 32, 44
TextRange objects, 220
three-level outlines, 180-189

creating

558

variables, 89-90
web pages, 18-19
web site templates, 17

criteria, document.all,
specifying, 115

cropping images with clip
property, 204-205

CSS (Cascading Style Sheets),
16, 21, 25-26, 41-43, 52-53

advanced features, 70-76
attributes, units of

measurement, 467-468
backgrounds, 52-53
borders, 53
classes, 71-72
comments, adding, 64-65
defining styles, HTML

comments, 57-58
element IDs, 72-73
elements, nesting, 74-77
font properties, values, 69-70
fonts, 52
inheritance, 64
lists, 53
multiple selectors, 58
positioning attributes, 467-470
properties, 65

background, 65-66, 458
background-attachment, 459
background-color, 459
background-image, 459
background-position, 459
background-repeat, 459
border, 460
border-bottom, 460
border-color, 460
border-left, 460
border-right, 460
border-style, 460
border-top, 460
border-width, 461
box properties, 66
Classification properties, 67
clear, 464
color, 65-66
display, 464
float, 464
font, 65, 69-70, 456
font-family, 456
font-size, 457
font-style, 457
font-variant, 458
font-weight, 456
height, 464
letter-spacing, 461
list-style, 465
list-style-image, 465

list-style-position, 465
list-style-type, 465
margin, 462
margin-bottom, 463
margin-left, 463
margin-right, 463
margin-top, 463
padding, 463
padding-bottom, 463
padding-left, 463
padding-right, 463
padding-top, 463
text properties, 66
text-align, 462
text-decoration, 461
text-indent, 462
text-transform, 462
values, 67-70
vertical-align, 462
white-space, 464
width, 463
word-spacing, 461

pseudo classes, 73-74, 466
pseudo elements, 73-74, 466
style blocks, 55
style sheets

importing, 60-61
linking, 59-60
overriding definitions, 62-63
processing hierarchy, 63-64
syntax, 56-65

text, 53
visual effects, 533-547
web pages, layout, 17
web sites, 77, 499-500

templates, creating, 17
CSS list-style (CSS

property), 465
CSS Positioning, 181-189,

192, 274, 341
absolute positioning, 182,

193-197
clip property, 204-205, 469
elements, animating, 209-213
height property, 201-203, 468
left property, 199-201
overflow property, 203-204, 469
position element, 182-187
position property, 199
relative positioning, 184,

197-205
top property, 199-201, 468
visibility property, 207-213, 470
width property, 201-203, 468
z-index property, 206-207, 469

CSS text-decoration (CSS
property), 461

CSS-enabled browsers, 57-58
CSS1 (Cascading Style Sheets,

Level 1), 16
ctrlKey (event object property),

126, 141, 155
curly braces ({}), property

definitions, syntax, 57
current record binding,

261, 550
customizing

colors, 68-69
filters, 537-538
HTML elements, inline

styles, 54
web page content at load time,

26-27
web pages at runtime, 216-217

replacing elements, 216 -217
text, 217

D
data, 82

arrays, 104-105
DSOs (Data Source Objects)

filtering, 256
sorting, 255

files, specifying, 259
JavaScript, 85-86
navigating, Tabular Data

Control, 260-265
object model for script access,

256-265
Remote Data Service,

accessing, 254
requested, manipulation of,

255-256
Tabular Data Control,

accessing, 254
data awareness,13-15, 21, 32,

44
tables, creating, 14

data binding, 15, 21, 31-32,
44, 232-233

attributes
DATAFLD, 243-244
DATAFORMATAS, 244
DATAPAGESIZE, 244
DATASRC, 242-243

client-side, 233
advantages, 238-240
comparing to server-side

data binding, 234-238
data sources, establishing for

online catalog, 380

creating

559

online catalog, 393
server-side, 232-233

disadvantages, 234-238
sources, 232
tables, creating, 32
tabular data, 240

data consumers, 242, 247-250
<APPLET> tag, 250
<DIV> tag, 247
HTML data binding, 241-242
 tag, 249-250
<MARQUEE> tag, 249
online catalog, creating, 381
<SELECT> tag, 249
 tag, 247-249

data retrieval method, 253-255
Data Source Objects, see DSOs
Data Source Objects, ActiveX

objects, 251
data sources

generating, 380
HTML data binding, 241-242
online catalog

establishing, 380
specifying, 379

data transport mechanism,
252-253

databases, data binding, 31-32
DATAFLD attribute, 243-244
DATAFORMATAS

attribute, 244
DATAPAGESIZE attribute, 244
DATASRC attribute,

242-243, 258
DataUrl parameter, 259
DataURL property, 266
date format constants, defining

in VBScript, 483
date/time constants, defining in

VBScript, 482-483
<DD> tag, 435
debugging for loops, 99
declarations, local

declarations, 61
declaring function variables, 90
decreasing font size, 170
default event handling,

overriding, 158-159
defining

cascading, 61-64
classes, 71

constants in VBScript, 481-484
containers, rectangular, 202
data sources, 241
dynamic, 37-39
element positioning

clip property, 204-205
height property, 201-203
left property, 199-201
overflow property, 203-204
position property, 199
top property, 199-201
visibility property, 207-213
width property, 201-203
z-index property, 206-207

event handlers, 147
global styles, style blocks, 55
objects, 103-109
style sheets, 25

syntax, 56-65
styles

classes, 71-73
element IDs, 72-73
<HEAD> tag, 57-58
HTML comments, 57-58
inheritance, 64
pseudo classes, 73-74
pseudo elements, 73-74

variables, 89-90
 in VBScript, 475

web pages, 220
definitions

adding comments, 64-65
overriding, 62-63
processing order, 63-64

deleting web page content,
221-222

depth, positioning
elements, 189

design elements
data awareness, 32
positioning, 12, 28
Z-indexing, 12-13

design issues, 52-53
designing

collapsible outlines, 178-182
Peek-A-Boo game, 174-178
web pages, Z-indexing, 12-13

detect() function, 343-345
<DFN> tag, 435
DHTMLZone web site, 499
diagnostic tools, HTML tag

identification, 544-547
dimensions, defining for

containers, 186

<DIV> tag, 247, 338, 359,
361-362, 436

<DIR> tag
DirectAnimation ActiveX

Controls, 333
DirectDraw ActiveX Controls,

542-543
DirectDraw API, 533, 544
DirectX, 544
disabling anchor links,

158-159
display (CSS property), 67, 464
displaying elements, 172-181

collapsible outlines, 178-182
dissolve transitions, creating,

295-296
dissolving, see Transitions
DIV element, creating, 291-292
<DIV> tag, 175, 338, 359,

361-362, 436
divisions

CSS properties, 65
background properties,

65-66
box properties, 66
Classification properties, 67
color properties, 65-66
font properties, 65
text properties, 66

<DL> tag, 436
<!DOCTYPE> tag, 428
document (body object

property), 131
document object, 114, 121,

127-135, 490-492
all collection, 133-134
anchors collection, 134
applets collection, 134
body object, 131-133
collections, 129
embeds collection, 135
events, 129
filters collection, 135
forms collection, 134
frames collection, 135
images collection, 134
links collection, 135
methods, 129
plugins collection, 135
properties, 129-130
scripts collection, 135
selection object, 131
styleSheets collection, 135-136

document object

560

document.all collection,
115-117

documents
elements, identifying, 544-547
focus events, 141-142
global styles, style blocks, 55
HTML

nesting elements, 74
returning element

objects, 118
modifying at runtime, 216-217
Pin the Tail on the Donkey

game, structuring, 338-339
replacing elements, 216-217
selection events, 141-142

ondragstart event, 142
onselect event, 142
onselectstart event, 142

server-side data binding,
disadvantages, 234-238

state change events, 142
style sheets

importing, 60-61
linking, 59-60

tabular form data binding, 240
text

modifying at runtime, 217
replacing, 222-224

transitions, 290-292
domain (document object

property), 130
downloading

hidden elements, 207-208
server data, client-side data

binding, 238-240
Drop Shadow Filter, 287,

320-321
DSOs (Data Source Objects),

252-257, 550
BORDER attribute, 258
compatibilities

cross-platform, 256-257
language, 256-257

data
filtering, 256
sorting, 255

data retrieval method, 253-255
data transport mechanism,

252-253
DATASRC attribute, 258
HEIGHT attribute, 258
ID attribute, 258
manipulation of requested data,

255-256
object model for script

access, 256
responsibilities, 252-256

TDC (Tabular Data Control),
257-269

visual representation, 258
WIDTH attribute, 258

<DT> tag, 437
duplicate() method, 218
dynamic content

text, replacing, 222-224
web pages

deleting content, 221-222
modifying at runtime,

216-217
modifying text, 217
replacing elements, 216 -217

dynamic elements, Pin the Tail
on the Donkey game,
positioning, 340-341

dynamic fonts, 168-172
Dynamic HTML

advantages, 10-16
server load, 19-20

altering web page content at
runtime, 27-28

animation, 209-213
applications, building, 33
collapsible outlines, 178-182
comparing Netscape to

Microsoft, 37-39, 45-46
comparing with static HTML,

8-10
CSS, 25 -26
CSS Positioning, 181-189

Position element, 182-187
relative positioning, 184

data awareness, 13-15
defining, 37-39
design elements, positioning, 12
element objects

accessing, 118
methods, 120-121
properties, 118-120

elements
hiding, 172-181
mouse event-dependent

visibility, 173-174
showing, 172-181
visibility, 173

event bubbling, canceling,
161-163

event handling, 143-149
events, 138-143

binding functions, 149-153
focus events, 138, 141-142
keyboard events, 138,

140-141
mouse events, 138-140

onabort event, 142-143
overriding default event

handling, 158-159
selection events, 141-142
state change events,

 138, 142
font specification, 11
HTML objects, creating, 15
layout, 11-13

Z-indexing, 12-13
Microsoft, 22, 43-44

data awareness, 44
data binding, 44
standardizing web

technologies, 36-37
multimedia, 29-31

Alpha Channel graphics,
 30-31

animation, 29-30
blending, 30-31
filtering, 30-31

Netscape
comparing to Microsoft

Dynamic HTML, 45-47
standardizing web

technologies, 36-37
objects

style object, 168-169
window.event object,

153-158
scripting, 24-25

JavaScript, 17-18
VBScript, 18

style sheets, 16-17
tables, generating, 32
text, altering, 11
visual effects, 533-542
web pages, configuring for

browsers, 26-27
see also HTML

Dynamic HTML Object Model,
22-23, 112-113

animation, 209-213
browsers, 113
element objects

properties, 118-120
returning, 118

event bubbling, 23
HTML tags, 42
Internet Explorer 4.0, 114-115
scripting, 24
tags, modifying for dynamic

content, 226-228
TextRange objects, 217-219

dynamic styles
absolute positioning, 193-197
clip property, 204-205

document.all collection

561

elements
animating, 209-213
hiding, 172-181
showing, 172-181

fonts, modifying, 168-172
height property, 195, 201-203
layering elements, 205-209
left property, 199-201
overflow property, 203-204
position property, 192-193, 199
rectangular flow area, 195
relative positioning, 197-205
top property, 199-201
visibility property, 207-213
width property, 195, 201-203
z-index property, 206-207

dynamic table generation, 44

E
element binding, 150
element IDs, 72-73
element objects, 118

methods, 120-121
properties, 118-120

elements
ActiveX objects, 333-334
arrays, 104-105
assigning multiple styles

classes, 71-72
element IDs, 72-73
pseudo classes, 73-74
pseudo elements, 73-74

attributes
DATAFLD, 243-244
DATAFORMATAS, 244
DATAPAGESIZE, 244
DATASRC, 242-243

binding to data values, 242
clip property, 204-205
collection elements, accessing,

115 -116
containers

left value, 186
positioning, 186-187
top value, 186

data consumers, 247-250
<APPLET> tag, 250
<DIV> tag, 247
 tag, 249-250
<MARQUEE> tag, 249
<SELECT> tag, 249
 tag, 247-249

defining, 280
<DIV> element, creating,

291-292

event handlers, adding, 150
events, bubbling, 159-162
filtering

Chromakey Filter, 332
Drop Shadow Filter, 320-321
Flip Horizontal Filter,

 321-322
Flip Vertical Filter, 322-323
Glow Filter, 331-332
Grayscale Filter, 323-324
Invert Filter, 324
Lights Filter, 325-327
Motion Blur Filter, 327-328
Opacity Filter, 328-329
Shadow Filter, 329-330
Wave Filter, 330-331
X-Ray Filter, 318-320

font attributes, modifying,
168-172

graying out, functions, 365-366
height property, 195, 201-203
hiding, 172-181
ID attributes, 151
identifying, 544-547
layering, 205-209
left property, 199-201
modifying at runtime, 216-217
moving, 209-213
nesting, 74-77, 195
overflow property, 203-204
overlapping, 196
position property, 199
positioning

absolute positioning,
 193-197

CSS Positioning,
181-189, 192

positions, 182-187
properties

id, 120
left, 120
position, 194
tagname, 120
top, 120
width, 195

pseudo elements, 73, 466
replacing, 216 -217
showing, 172-181
text, replacing, 217
top property, 199-201
transitioning, 297-314
Transitions

Box In, 298
Box Out, 299
Circle In, 299-300
Circle Out, 300-301
Checkerboard Across, 305
Checkerboard Down,

305-306

Horizontal Blinds, 304-305
Random Bars Horizontal,

312-313
Random Bars Vertical, 313
Random Dissolve, 306-307
Random, 314
Split Horizontal In, 308-309
Split Horizontal Out, 309
Split Vertical In, 307
Split Vertical Out, 307-308
Strips Left Down, 309-310
Strips Left Up, 310-311
Strips Right Down, 311
Strips Right Up, 311-312
Vertical Blinds, 303-304
Wipe Down, 301-302
Wipe Left, 303
Wipe Right, 302-303
Wipe Up, 301

visibility, 173, 207-213
mouse event-dependent,

173-174
width property, 195, 201-203
Z-index, 189, 206-207
see also objects

em (CSS property measurement
unit), 67

 tag, 437
<EMBED> tag, 339, 437
embedding

client-side data binding, 233
comparing to server-side

data binding, 234-238
embeds collection (document

object), 135, 494
empty method (selection

object), 131
encapsulation, 101
equal (Boolean operator), 88
error handling, JavaScript,

526-531
error trapping, 530-531
escape(charstring) (Javascript

function), 93
eval(codestring) (JavaScript

function), 93
EVENT attribute

(SCRIPT...FOR binding
method), 151

event bubbling, 23, 46,
159-162, 550

canceling, 161-163
event firing, 143

event firing

562

event handling, 23, 27,
143-149, 550

default event handling,
overriding, 158-159

JavaScript, 144-146
event objects, 126-127,

489-490
window.event object, 153-158

altKey property, 154-155
button property, 155
cancelBubble property, 156
ctrlKey property, 155
fromElement property, 156
keyCode property, 154
properties, 154
returnValue property, 156
shiftKey property, 155
srcElement property, 157
toElement property, 157
x property, 157
y property, 157-158

events, 138-143
binding functions, 149-153

element binding, 150
SCRIPT...FOR binding

method, 150-152
VBScript special syntax

binding method, 152-154
document object, 129
event handling, 143-149
focus events, 138, 141-142
keyboard events, 138, 140-141

onhelp, 141
onkeydown, 140 -141
onkeypress, 141
onkeyup, 141

mouse events, 138-139
hiding elements, 173-174
onclick, 139
ondblclick, 139
onmousedown, 139
onmousemove, 140
onmouseout, 140
onmouseover, 140
onmouseup, 139

onabort event, 142-143
onerror() event, 531
selection events, 141-142
state change events, 138, 142
see also event firing

ex (CSS property measurement
unit), 67

executing transitions, 295
expanding

outlines, 27
tables, 44

explanations
formatting, 361-362

hiding, 364-365
showing, 364-365

expressions (JavaScript), 82,
86-89

logical expressions, 87-89
numerical expressions, 87
testing, 99

extensions, data binding,
implementing, 245-247

external scripts, specifying,
532-533

extracting
collection elements, 115-116
length property from

collections, 116 -117

F
face value (font property), 168
fading, see Transitions
false expressions, 88-89
fgColor (document object

property), 130
field delimiters, 267, 550
FieldDelim property, 267
fileCreatedDate (document

object property), 130
fileModifiedDate (document

object property), 130
files

data, specifying, 259
data source, generating, 380
HTML, linking style sheets,

59-60
padprog.js, 537-538
scripting blocks, naming

convention, 532
source code zip file, 505

fileSize (document object
property), 130

fileUpdatedDate (document
object property), 130

Fills Control, 285
Filter Controls, 287-288
filter functions, 319
filter generator, creating,

533-536
filtering, 30-31

data, 256
online catalog

maximum cost filtering,
387-388

product type filtering,
 386 -387

setting properties, 386 -387
text, 533-536
user criteria, online catalog,

385 -386
filtering program

tutorial, 539
VBScript version, 540-541

filters, 287, 533
Chromakey Filter, 332
customizing, 537-538
Drop Shadow Filter, 320-321
Flip Horizontal Filter,

321-322
Flip Vertical Filter, 322-323
Glow Filter, 331-332
Grayscale Filter, 323-324
Invert Filter, 324
Lights Filter, 325-327
Motion Blur Filter, 327-328
Opacity Filter, 328-329
Shadow Filter, 329-330
Wave Filter, 330-331
X-Ray Filter, 318-320

filters collection (document
object), 135, 495

transition object, returning, 293
:first-letter (pseudo

element), 466
:first-line (pseudo

element), 466
Flip Horizontal Filter, 321-322
Flip Vertical Filter, 322-323
FlipH filter control, 287
FlipV filter control, 287
float property, 184, 464
floating point numbers, 86
flow control (JavaScript), 82,

97-101
break statements, 100 -101
continue statements, 100-101
for loop statements, 98-99
if and if...else statements, 97-98
VBScript, 478-481
while loop statements, 99-100

focus (body object
property), 132

focus events, 138, 141-142
onblur event, 141
onfocus event, 141

font
styles, specifying attributes, 168
values, CSS properties, 69-70

event handling

563

font (CSS property), 456
font properties (CSS), 65
font property (style object), 168
FONT property, values, 69
 tag, 438
font-family (CSS property),

65, 456
values, 69

font-family value, defining, 169
font-size (CSS property), 65,

69, 457
font-style (CSS property), 65,

69, 457
font-variant (CSS property),

65, 458
font-weight (CSS property),

65, 456
fonts, 52

color, modifying, 171-173
italic, 69-70
modifying after loading, 16
size, modifying, 170
specifying, 11
style, modifying, 168-169

fontSize property, 170
FOR attribute (SCRIPT...FOR

binding method), 151
for...next loops, writing in

VBScript, 480
<FORM> tag, 438
formatting

spacers, one pixel spacers, 9
style sheets, 16-17
text, 11

modifying fonts after
loading, 16

static HTML, 9
forms, event handling, 144
forms collection (document

object), 134, 494
forward() method, history

object, 123
<FRAME> tag, 439
frames collection (document

object), 124, 135, 488, 495
<FRAMESET> tag, 439-440
fromElement (event object

property), 126, 156
functionalities, scripting,

343-349, 363-367

functions, 82
animation, 209-213
binding, 149-153

element binding, 150
SCRIPT...FOR binding

method, 150 -152
VBScript special syntax

method, 152-154
blindfold(), 343, 346
count(), 342-343, 345 -346
detect(), 343-345
filter functions, 319
hideObject(), constructing,

364-365
hideScreenCourt(), 363

elements, graying out,
365 -366

highlight(), 360, 363
icons, borders, 366

isNaN(), 531
JavaScript, 93-96

built-in functions, 93-96
user-defined functions, 95-96

lowlight(), 363
icons, borders, 366

methods, 102
built-in objects, 103
properties, 102-103
user-defined objects, 103-109

MoveObject(), 280
MoveTail(), 342-344
MoveTextBlock(), 212
mytext_onmouseover(), 168
online catalog, building, 386-387
onmouseout(), 169
onmouseover(), 169, 176
parentheses, 93
Pin the Tail on the Donkey

game, 343
reset(), 343, 348-349, 363

applications, resetting,
366 -367

scaleAnother(), 278
scaleCat(), 274, 278
seeagain(), 343, 346-347
showObject(), constructing,

364-365
showScreenCourt(), 363

elements, graying out,
365-366

sorry(), 343, 347
user-defined functions, Listing

5.4, 95-96
variables, defining, 90
window.setTimeout(), 210
winner(), 343, 348
see also methods

functions (JavaScript), 93-96

G
gameboards, Pin the Tail on the

Donkey game, structuring,
338-339

games
Alien Head, 28
Peek-A-Boo, creating, 174-178
Pin the Tail on the Donkey, 338

dynamic elements,
positioning, 340-341

elements, 338
gameboard and document,

structuring, 338-339
static elements, positioning,

339-340
tails, positioning, 342

Smashout Video
programming challenges,

403
rules, 402-403

generating
data sources, 380
data-aware objects, 32
tables, 14, 32, 44

Tabular Data Control, 379
getAttribute (body object

property), 133
global

scripts, creating, 532
style sheets,

troubleshooting, 60
styles, specifying with style

blocks, 55
Glow Filter, 287, 331-332
glows, see filters
go() method, history

object, 123
graphic design, 52-53
graphs, see tables
Gray Filter control, 287
graying out elements, functions,

365-366
Grayscale Filter, 323-324
greater than (Boolean

operator), 88
greater than or equal (Boolean

operator), 88
grouping objects in collections,

115-117
GUI objects, binding

events, 145

GUI objects, binding events

564

H
handlers, JavaScript error

handling, 526-531
hash (location property), 123
<HEAD> tag, 440

styles, 57-58
header section, scripting

syntax, 532
header tags, 440
headers (documents)

properties, assigning with
multiple selectors, 58

style, defining, 64
HEIGHT attribute, 258
height property, 66, 184, 186,

195, 201-203, 464, 468
Hello World program, Listing

5.1, 81
help-related keys, 141
hexadecimal

assigning colors to HTML
pages, 69

browser-safe hexadecimal
chart, 508-512

hexadecimal color codes, 467
hideObject() function,

constructing, 364-365
hideScreenCourt()

function, 363
graying out elements, 365-366

hiding
<DIV> element, 292
elements, 172-181

see also collapsible outlines
hierarchies

HTML containment hierarchy,
159 -160

object hierarchies, 114 -115,
135 -136

style definition processing, 63
highlight() function, 360, 363

icon borders, 366
Listing 17.6, 366-376

history object, 123-124, 488
length property, 123

Horizontal Blinds Transition,
286, 294, 304-305

host (location property), 122
hostname (location

property), 123
<HR> tag, 440-441

href (location property), 122
HTML

attributes, setting, 54
code, adding comments, 64-65
comments, 57-58
containment hierarchy, 159-160
data binding, 241-242
dynamic

advantages, 10 -16
altering text, 11
creating HTML objects, 15
creating tables, 14
CSS, 25 -26
data awareness, 13-15
font specification, 11
positioning design

elements, 12
server load, 19-20
style sheets, 16 -17
Z-indexing, 12-13

Dynamic HTML Object Model,
22-23, 112-113

collections, 115-117
pages, DSOs (Data Source

Objects), 252
static

altering web page content,
10 -11

formatting limitations, 9
layout limitations, 9 -10

tags
<A>, 428
<ADDRESS>, 429
<APPLET>, 250, 429-430
<AREA>, 430
, 430
<BASE>, 430
<BASEFONT>, 431
<BGSOUND>, 431
<BIG>, 431
<BLINK>, 7, 36
<BLOCKQUOTE>, 432
<BODY>, 432-433

, 433
<BUTTON>, 433
<CAPTION>, 433-434
categorizing, 544-547
<CENTER>, 434
child tags, 64
<CITE>, 434
<CODE>, 434
<COL>, 434-435
<COLGROUP>, 435
<DD>, 435
<DFN>, 435
<DIR>, 436
<DIV>, 175, 247, 290, 338,

359, 361-362, 436
<DL>, 436

<!DOCTYPE>, 428
<DT>, 437
, 437
<EMBED>, 339, 437
, 438
<FORM>, 438
<FRAME>, 439
<FRAMESET>, 439-440
<H1>, 440
<H2>, 440
<H3>, 440
<H4>, 440
<H5>, 440
<H6>, 440
<HEAD>, 57-58, 440
<HR>, 440-441
<HTML>, 441
<I>, 441
, 249-250, 441-442
<INPUT>, 442
<LABEL>, 442-443
, 443
<LINK>, 59-60, 443
<MAP>, 443-444
<MARQUEE>, 249, 444
<META>, 445
modifying for dynamic

content, 226-228
<NOBR>, 445
<NOSCRIPT>, 445
<OBJECT>, 258, 445-446
, 446
<OPTION>, 446 -447
<P>, 447
<PARAM>, 447
parent tags, 64
<PRE>, 447
properties, 58
<S>, 447
<SCRIPT>, 81, 448
<SELECT>, 249, 448-449
selectors, 57
<SMALL>, 449
, 247-249, 339, 362,

449
, 9, 449
<STYLE>, 25, 450
<SUB>>, 450
<SUP>, 450
<TABLE>, 9, 450-451
<TD>, 451-452
<TEXTAREA>, 452
<TITLE>, 452
<TR>, 453
<TT>, 453
<U>, 453
, 453

text attributes, specifying, 54
see also Dynamic HTML

handlers, JavaScript error handling

565

HTML documents
elements, assigning multiple

styles with
classes, 71-72
element IDs, 72-73
pseudo classes, 73-74
pseudo elements, 73-74

paragraphs, counting, 116-117
styles, defining, 64

HTML elements, see elements
HTML Object Model

collections, 115-117
accessing elements, 115-116

document object, 127-135
all collection, 133-134
anchors collection, 134
applets collection, 134
body object, 131-133
embeds collection, 135
filters collection, 135
forms collection, 134
frames collection, 135
images collection, 134
links collection, 135
plugins collection, 135
scripts collection, 135
selection object, 131
styleSheets collection,

135-136
properties, 224-226

innerHTML, 225
innerText, 224-225
outerHTML, 225-226
outerText, 225

TextRange object, 135-136
window object, 121-127

document object, 121
event object, 126-127
frames collection, 124
history object, 123-124
location object, 122-123
navigator object, 125-126
screen object, 124-125

HTML objects
creating, 15
data awareness, 32

htmlText (TextRange object
property), 218

HTTP (Hypertext Transfer
Protocol), 36, 252

I
<I> tag, 441
icons

basketball tutorial, formatting,
358-361

borders
hiding, 366
showing, 366

naming, 359
id (body object property), 118,

120, 131
ID attributes, 258

event binding, 151
identifying elements in a

document, 544-547
tabular data, 240-241

IE 4.0 (Internet Explorer 4.0),
80

Dynamic HTML Object Model,
114-115

intrinsic controls, 134
IE4 Globe web site, 501
if and if...else statements,

97-98
VBScript, 478-479

images
aligning with captions, 193-195
animating, 209 -213
cropping, clip property, 204-205
defining, 274
filters, 316

adding, 317-318
Chromakey Filter, 332
Drop Shadow Filter, 320-321
Flip Horizontal Filter,

321-322
Flip Vertical Filter, 322-323
Glow Filter, 331-332
Grayscale Filter, 323-324
Invert Filter, 324
Lights Filter, 325-327
Motion Blur Filter, 327-328
Opacity Filter, 328-329
Shadow Filter, 329-330
Wave Filter, 330 -331
X-Ray Filter, 318-320

hiding, 173-174
scaling, 274-275
Scaling an Image (Listing 13.1),

275-278
shrinking, 276
Transitions, 290-292

Box In, 298
Box Out, 299
Checkerboard Across, 305
Checkerboard Down,

305-306
Circle In, 299-300
Circle Out, 300-301
controlling, 292-293
Horizontal Blinds, 304-305
implementing, 295-298

Random Bars Horizontal,
312-313

Random Bars Vertical, 313
Random Dissolve, 306-307
Random, 314
Split Horizontal In, 308-309
Split Horizontal Out, 309
Split Vertical In, 307
Split Vertical Out, 307-308
Strips Left Down, 309-310
Strips Left Up, 310-311
Strips Right Down, 311
Strips Right Up, 311-312
types, 297-314
Vertical Blinds, 303-304
Wipe Down, 301-302
Wipe Left, 303
Wipe Right, 302-303
Wipe Up, 301
see also Transitions

visual effects, 533-542
images collection (document

object), 134, 494
IMG elements, onabort event,

142-143
 tag, 249-250, 441-442
implementing

attributes, data-binding, 245-247
JavaScript

constructors, 525
instantiation, 525

transitions, 295-298
@import statement, 60
importing style sheets, 59-61
in (CSS property measurement

unit), 67
inches (CSS property

measurement unit), 67
increasing font size, 170
incrementing counters in while

loops, 100
indexes, creating, 27
indexing, Z-indexing, 12-13
InetSDK, 551
infinite loops, preventing, 101
inheritance, 64
initializing counter

 variables, 99
inline attributes, defining event

handlers, 147
inline styles, 54

definitions, overriding, 62-63

inline styles

566

innerHTML (body object
property), 131, 225

innerText (body object
property), 131, 224-225

<INPUT> tag, 442
inRange() method, 219
insertAdjacentHTML (body

object property), 133
insertAdjacentText (body object

property), 133
instantiation, JavaScript, 524
integer IDs, transitions,

293-294
interactive (readyState property

value), 142
Internet, web servers, server-

side data binding, 232-233
Internet Explorer 4.0,

see IE 4.0
Internet SDK web site, 544
intrinsic controls, 134
Invert Filter, 287, 324
isEqual() method, 219
isNaN(numvalue) (JavaScript

function), 93, 531
isTextEdit (body object

property), 131
italicizing, 69-70
item(string) collection method,

115-116
iteration, loops, 100-101

J-K
Java, 551
javaEnabled (navigator object

property), 126
JavaScript, 17-18, 24, 80-83

arguments, codestring, 94
constructors,

implementing, 525
elements, visibility, 173
error handling, 526-531
error trapping, 530-531
event handling, 144-146
events, binding, 145
fonts,

color, modifying, 171-173
size, modifying, 170-173
styles, modifying

attributes, 168

Hello World program, Listing
5.1, 81

instantiation, 524
recursion, controlling, 521-526
statements, blocks, 83
syntax elements, 82-83

arrays, 104-105
blocks, 83
Booleans, 86
built-in functions, 93-94
comments, 83-85
data, 85-86
expressions, 86-89
flow control, 97-101
functions, 93-96
logical expressions, 87-89
multiline comments, 84-85
null data, 86
numbers, 86
numerical expressions, 87
objects, 101-104
single-line comments, 84
statements, 83
strings, 85
user-defined functions, 95-96
variables, 89-93

web site, 108
JavaScript Date object, 106
JavaScript Style Sheets,

see JSSS
JScript, see JavaScript
JSSS (JavaScript Style

Sheets), 41-43

keyboard events, 138, 140-141
keyCode (event object

property), 126, 154

L
<LABEL> tag, 442-443
language (body object

property), 132
LANGUAGE attribute

(SCRIPT...FOR binding
method), 152

language attributes, Visual
Basic, Scripting Edition, 81

Language property, 265
languages

programming, Visual Basic, 80
scripting, 17-18, 24-25, 40-41,

514-533

event handling, 143-149
events, 138-143
JavaScript, 17-18, 24, 80-83
recursion, 516 -526
selecting, 515-516
VBScript, 18, 24, 472
see also JavaScript

lastModified (document object
property), 130

layering
elements, 205-209

Z-index, 189
objects, absolute

positioning, 193
Z-indexing, 358

layout
absolute positioning, 193-197
clip property, 204-205
columns, creating, 201-202
CSS (Cascading Style

Sheets), 25
CSS Positioning, 192
design elements, positioning, 12
Dynamic HTML, 11-13
elements

animating, 209-213
nesting, 195

height property, 201-203
left property, 199 -201
overflow property, 203-204
position property, 192-193, 199
relative positioning, 197-205
static HTML, 9-10
style sheets, 16-17
top property, 199-201
visibility property, 207-209
width property, 201-203
z-index property, 206-209
Z-indexing, 12-13

left property, 118, 120,
199-201

values, 199
leftMargin (body object

property), 132
length, collections, returning,

116-117
length (left property value), 199
length (top property value), 199
length property, history

object, 123
Less than (Boolean

 operator), 88
Less than or equal (Boolean

operator), 88

innerHTML (body object property)

567

letter spacing, 67-68
letter-spacing property, 66, 461
 tag, 443
Lie, Hankon, 77
Lights Filter, 325-327

point light, adding to
elements, 326

linear programs, 478
Lines Control, 285
:link (pseudo class), 73, 466
<LINK> tag, 59-60, 443
linkColor (document object

property), 129
linking style sheets, 59-60
links, Dynamic HTML,

 498-499
links collection (document

object), 135, 494
list-style-image (CSS property),

465
list-style-position (CSS

property), 465
list-style-type (CSS

 property), 465
list-styles property, 67
lists, 53
load time

altering web pages, 26-27
see also runtime

loading
style sheets into documents,

 60-61
web pages, 37

loading (readyState property
value), 142

local declarations, 61
location (document object

property), 130
location object, 122-123, 488
logic, Smashout Video game,

adding, 416-423
logical

expressions, 87-89
testing, 99

operators, specifying in
VBScript, 474

looping statements
for loops, 98-99
for...next loops, writing in

VBScript, 480

while loops, 99-100
while...wend loops, writing in

VBScript, 480-481
loops, 97

breaking, 100-101
continuing, 100 -101
for loops, 98-99
for...next loops, writing in

VBScript, 480
if and if else... statements,

97-98
while loops, 99-100
while...wend loops, writing in

VBScript, 480-481
lowlight() function, 363

icon borders, 366

M
M-Width (CSS property

measurement unit), 67
maintenance, web pages, 19
manipulating text, 11

after loading, 16
<MAP> tag, 443-444
margin (CSS property), 462
margin-bottom (CSS

property), 463
margin-left (CSS property), 463
margin-right (CSS

 property), 463
margin-top (CSS property), 463
margins property, 66
<MARQUEE> tag, 249, 444
Mask Filter control, 287
measurement units, CSS

properties, specifying, 67-68
<META> tag, 445
methods, 120-121

contains() method, 120
document object, 129, 491-492
MoveNext() method, 261
Polygon method (SGC), 544
scrollIntoView(), 120
selection object, 131
TextRange object, 218-219
window object, 487-488

alert(), 117
see also functions

Microsoft Data Source Object
Gallery web site, 499

Microsoft Dynamic HTML, 22,
43-44

data awareness, 44
data binding, 44

Microsoft Dynamic HTML
Gallery web site, 499

Microsoft Dynamic HTML Main
Page web site, 498

Microsoft Guide to Style Sheets
web site, 500

Microsoft Internet Client SDK
web site, 499

Microsoft Internet Explorer 4.0
Dynamic HTML Object Model,

114-115
JavaScript web sites, 108
see also IE 4.0

Microsoft JScript Home web
site, 501

Microsoft Office Object
 Model, 113

Microsoft Style Sheets Gallery
web site, 500

Microsoft VBScript Home web
site, 501

Microsoft web site, 256, 285
millimeters (CSS property

measurement unit), 67
mimeType (document object

property), 129
mirroring

Flip Horizontal Filter, 321-322
Flip Vertical Filter, 322-323

mm (CSS property
measurement unit), 67

models
Dynamic HTML Object Model,

22-23, 112-113
collections, 115-117
document object, 127-135
event bubbling, 23
Internet Explorer 4.0,

114-115
TextRange object, 135-136
window object, 121-127

object models, 112-113
modifying

document content with
TextRange objects, 219-221

dynamic styles, fonts, 168-172
filters, parameters, 538-540
font color, 171-173
font size, 170

modifying

568

font styles, 168-169
JavaScript code, brackets, 83
text

at runtime, 217
TextRange objects, 217-219

variables, 91-93
VBScript, 475-476

web page content
after loading, 15-16
at load time, 26-27
replacing elements, 216-217
at runtime, 27-28, 216-217

Motion Blur Filter, 327-328
mouse

Smashout Video game,
animating paddles, 408-409

window.event object, button
property, 155

mouse events, 138-139
hiding elements, 173-174
onclick, 139
ondblclick, 139
onmousedown, 139
onmousemove, 140
onmouseout, 140
onmouseover, 140
onmouseup, 139

move() method, 219
moveEnd() method, 219
MoveNext() method, 261
MoveObject() function, 280
moveStart() method, 219
MoveTail() function, 342-344
MoveTextBlock() function, 212
moving

elements, 209-213
TextRange objects,

 methods, 219
multiline comments

(JavaScript), 84-85
multimedia, 29-31

ActiveX
Multimedia Controls,

 283-287
objects, 333-334

Alpha Channel graphics, 30-31
animation, 29-30
blending, 30-31
Controls

Filter, 287-288
pthOval, 285
pthPolygon, 285
pthPolyline, 285
pthRect, 285
Rotate, 284

Scale, 284
scripting, 292-295
Structured Graphics,

284-285
transitions, 285-286, 290-297
Translate, 284

effects, 274-283
click and drag, 280-283

filters, 30-31, 316
adding, 317-318
Chromakey Filter, 332
Drop Shadow Filter, 320-321
Flip Horizontal Filter,

321-322
Flip Vertical Filter, 322-323
Glow Filter, 331-332
Grayscale Filter, 323-324
Invert Filter, 324
Lights Filter, 325-327
Motion Blur Filter, 327-328
Opacity Filter, 328-329
Shadow Filter, 329-330
Wave Filter, 330-331
X-Ray Filter, 318-320

images
scaling, 274-275
shrinking, 276

objects, rotating, 283-284
path animation effects, 285
Path Controls, 285
text, rotating, 283-284
transitions, 276-277

scaling, 277-279
multiple property

 definitions, 57
multiple selectors, 58
mytext_onmouseover()

function, 168

N
naming

icons, 359
variables, 89-90

in VBScript, 475
naming conventions, scripting

block files, 532
natural language labels, 68
navigating

data, Tabular Data Control,
260-265

online catalog, product view,
394-395

navigator object, 125-126, 489
properties, 125-126

nesting elements, 74-77, 195
Netcaster, 40
Netscape, 36

proprietary technology
support, 43

Netscape Dynamic HTML,
comparing to Microsoft
Dynamic HTML, 45-47

Netscape JavaScript Guide web
site, 500

Netscape JavaScript Reference
web site, 500

Netscape Navigator, Dynamic
HTML Object Model, 113

NNTP (Network News Transfer
Protocol), 252

<NOBR> tag, 445
Non-ActiveX Scaling Transition

(listing 13.3), 278
none (overflow property

value), 203
<NOSCRIPT> tag, 445
Not (Boolean operator), 88
not equal (Boolean

operator), 88
null data, 86
numbers, 86

integer IDs, transitions, 293
item() method arguments, 116

numeric expressions, 87, 551

O
object hierarchy, 114-115
object models, 112-113

Dynamic HTML Object Model,
22-23

animation, 209-213
event bubbling, 23
HTML tags, 42
Internet Explorer 4.0,

114-115
HTML Object Model

accessing objects, 115 -116
collections, 115 -117
document object, 127-135
TextRange object, 135-136
window object, 121-127

object reference, TDC (Tabular
Data Control), syntax, 259

<OBJECT> tag, 258, 445-446

modifying

569

object-oriented programming,
see OOP

objects, 83
ActiveX objects, 333-334

transitions, 290-297
all object, 113
animating, 209-213
applets collection, 134
basketball tutorial, 356-376
body object, 492

properties, 131-132
built-in objects, 103

JavaScript Date object, 106
data binding, 15, 44
Data Source Objects, specifying

for online catalog, 379
document object, 114, 127-135,

490-492
all collection, 133-134
anchors collection, 134
applets collection, 134
body object, 131-133
embeds collection, 135
filters collection, 135
forms collection, 134
frames collection, 135
images collection, 134
links collection, 135
plugins collection, 135
scripts collection, 135
selection object, 131
styleSheets collection,

135-136
DSOs (Data Source Objects),

252-257
data retrieval method,

253-255
data transport mechanism,

252-253
manipulation of requested

data, 255-256
object model for script

access, 256
responsibilities, 252-256

Dynamic HTML Object
Model, 112

event object, 489-490
grouping collections, 115-117
history object, 488
HTML, data awareness, 32
JavaScript, 101-104

built-in objects, 103
methods, 102
properties, 102-103
user-defined objects, 103-109

layering, 205-209
location object, 488
modifying at runtime, 216 -217

navigator object, 489
nesting, 195
position property, 192-193
positioning, 28

absolute positioning,
193-197

CSS Positioning, 181-189
rotating, 283-284
screen object, 489
scripting, 24
selection object, 492

methods, 131
Smashout Video game,

positioning, 404-406
style object

modifying font color,
171-173

modifying font face, 168-169
modifying font size, 170

TextRange objects, 135 -136,
217-219

creating, 220
modifying document

content, 219-221
user-defined objects, 103-109
window object, 113, 121-127,

486-495
document object, 121
event object, 126-127
history object, 123-124
location object, 122-123
methods, 487-488
navigator object, 125-126
properties, 486-487
screen object, 124-125

window.event object, 140, 153
altKey property, 154-155
button property, 155
cancelBubble property, 156
ctrlKey property, 155
fromElement property, 156
keyCode property, 154
properties, 154
returnValue property, 156
shiftKey property, 155
srcElement property, 157
toElement property, 157
x property, 157
y property, 157-158

window.event.toElement, 140
X and Y coordinates, values,

281-282
see also Dynamic HTML Object

Model; elements
offsetHeight (body object

property), 132
offsetLeft (body object

property), 132

offsetParent (body object
property), 132

offsetTop (body object
property), 132

offsetWidth (body object
property), 132

offsetX (event object
property), 126

offsetY (event object
property), 126

 tag, 446
OLE-DB API, Microsoft web

site, 256
onabort events, 142-143
onblur event, 141
onclick event, 139
ondblclick event, 139
ondragstart event, 142
one pixel spacers, 9
onerror() event, 531
onfocus event, 141
onhelp event, 141
onkeydown event, 140-141
onkeypress event, 141
onkeyup event, 141
online catalog

boilerplate code, 378-379
building, 378-383
columns, sorting, 383-385
CSS display property, 392
data, filtering, 385-386
data binding, 393
data consumers, creating, 381
data sources

establishing, 380
specifying, 379

event handlers, assigning to
headers, 384

filtering, requirements, 386-387
ftype_onchange() function,

building, 386
functions, building, 386 -387
headers, creating, 380
max_onchange() function,

building, 387-388
next() function, defining, 394
product view, 391-398

navigating, 394-395
product_onclick() function,

building, 384
Reset() method, calling, 384
showCurr() function,

 building, 393

online catalog

570

showTable() function,
building, 392

table view, specifying, 381
views, switching, 391

onload event, 142
onmousedown event, 139
onmousemove event, 140
onmouseout event, 140
onmouseout() function, 169
onmouseover event, 140
onmouseover() function,

169, 176
onmouseup event, 139
onreadystatechange event, 142

readyState property, 142
onselect event, 142
onselectstart event, 142
OOP (Object Oriented

Programming), 101-104
built-in objects, JavaScript Date

object, 106
built-in properties, 103
encapsulation, 101
methods, 102
properties, 102-103

user-defined, 103-109
Opacity Filter, 328-329
operators

arithmetic operators, specifying
in VBScript, 473

Boolean, 86, 88
logical operators, specifying in

VBScript, 474
numerical operators, 87
specifying in VBScript, 473-474

<OPTION> tag, 446-447
Or (Boolean operator), 88
organization objects, 113
orientation, absolute

positioning, 193
outerHTML property (HTML

Object Model), 225-226
outerText property (HTML

Object Model), 225
outlines

collapsible outlines, 178 -182
expanding, 27
three-level outlines, creating,

180-189
Oval Control, 284
OVERFLOW attribute, 359

overflow property, 187-188,
203-204, 276, 469

overlapping
elements, 196
objects, absolute

 positioning, 193
overriding

default event handling, 158-159
definitions with inline styles,

 62-63
definitions with style blocks,

62-63
style sheet definitions, 62-63

P
<P> tag, 447
padding (CSS property), 463
padding property, 66
padding-bottom (CSS

property), 463
padding-left (CSS

 property), 463
padding-right (CSS

property), 463
padding-top (CSS

property), 463
pages

HTML
counting paragraphs,

 116-117
grouping objects, 115 -117

web
altering at load time, 15 -16,

26-27
altering content, 10 -11
altering text, 11
creating, 18-19
creating HTML objects, 15
creating indexes, 27
creating tables, 14
CSS, 17
data awareness, 13-15
data binding, 31-32
font specification, 11
layout, 9-13
maintenance, 19
modifying at runtime,

 216-217
modifying font attributes,

168-172
modifying text, 217
positioning design

elements, 12
positioning objects, 28

replacing elements, 216-217
replacing text, 27
style sheets, 16-17
text formatting, 9
Z-indexing, 12-13

paragraph tag (HTML), 54
paragraphs

counting, 116 -117
text color, modifying, 56

<PARAM> tag, 447
parameters

DataUrl, 259
Drop Shadow Filter,

configuring, 320
filters, modifying, 538-540
TDC (Tabular Data

Control), 259
UseHeader, 259

parent tags, 64
parentElement, 118
parentElement (body object

property), 132
parentElement() methods, 218
parentheses, functions, 93
parentTextEdit (body object

property), 132
parseFloat(numstring)

(JavaScript function), 93
parseInt(numstring) (JavaScript

function), 94
parsing, style definitions, 63-64
pasteHTML() method, 219
path animation effects, 285
Path Control (ActiveX

Control), 333
Path Controls, 285
pathname (location

 property), 123
pc (CSS property measurement

unit), 67
Peek-A-Boo game

creating, 174-178
Listing 8.5, 177-179

percentage (left property value),
199

percentage (top property
value), 199

Perl, CGI scripts, 236
pgraph.id, 120
pgraph.left, 120

online catalog

571

pgraph.tagName, 120
pgraph.top, 120
picas (CSS property

measurement unit), 67
Pin the Tail on the Donkey

game, 338-349
blindfold() function, 346
count() function, 345 -346
detect() function, 344-345
dynamic elements, positioning,

340-341
elements, 338
functions, 343
gameboard and document

structuring, 338-339
MoveTail() function, 344
Reset button, 341
reset() function, 348 -349
scripting functionalities, 343-349
seeagain() function, 346-347
sorry() function, 347
static elements, positioning,

339-340
tails, positioning, 342
Tries counter, 340
winner() function, 348
Z-indexes, 341

pixels
container dimensions,

defining, 186
CSS property measurement

unit, 67
plugins collection (document

object), 135, 495
point light, adding to elements,

Lights Filter, 326
points (CSS property

measurement unit), 67
Polygon method (SGC), 544
port (location property), 123
position containers,

creating, 187
Position element, 182-187
position property, 192-197,

199
positioning

absolute positioning, 182,
193-197, 468

height specification, 195
rectangular flow area, 195
width specification, 195

containers, 186-187
CSS Positioning, 181-189, 192,

274, 341

design elements, 12
CSS (Cascading Style

Sheets), 25
Z-indexing, 12-13

dynamic elements, 340-341
elements, Z-index, 189
objects, 28
position property, 192-193
relative positioning, 184,

197-205, 468
Smashout Video game, 404-406
static elements, 339-340
static positioning, 192

Positioning attributes, CSS,
467-470

<PRE> tag, 447
predefined objects, 103
preventing infinite loops, 101
print design, 52-53

backgrounds, 52-53
borders, 53
fonts, 52
text, 53

priorities, style definition
processing, 63-64

processing order, style
definitions, 63-64

product view, online catalog,
391-398

adding, 393-394
navigating, 394-395

programming
ActiveX Controls, 542-544
client-side data binding, 233

advantages, 238-240
comparing to server-side

data binding, 234-238
recursion, 516-526

JavaScript, 521-523
VBScript, 517

server-side data binding
complexity, 234-235
round trip server

transactions, 236-237
scalability, 235-236

Smashout Video game,
challenges, 403

Sub procedures, recursion, 517
programming languages

JavaScript
arrays, 104-105
blocks, 83
Booleans, 86
built-in functions, 93-94
built-in objects, 103

comments, 83-85
data, 85-86
expressions, 86-89
flow control, 97-101
functions, 93-96
logical expressions, 87-89
multiline comments, 84-85
null data, 86
numbers, 86
numerical expressions, 87
objects, 101-104
properties, 102-103
single-line comments, 84
statements, 83
strings, 85
user-defined functions, 95-96
user-defined objects, 103-109
variables, 89-93

VBScript, 80, 471-484
programs

filter generator, creating,
533-547

linear programs, 478
Project Cool web site, 501
properties

assigning with multiple
selectors, 58

body object, 131-132
clip property, 204-205, 276
collections, returning, 116-117
CSS, 65

background properties,
 65-66, 458

background-attachment, 459
background-color, 459
background-image, 459
background-position, 459
background-repeat, 459
border, 460
border-bottom, 460
border-color, 460
border-left, 460
border-right, 460
border-style, 460
border-top, 460
border-width, 461
box properties, 66
Classification properties, 67
clear, 464
color properties, 65-66
display, 464
float, 464
font, 456
font properties, 65
font-family, 456
font-size, 457
font-style, 457
font-variant, 458

properties

572

font-weight, 456
height, 464
letter-spacing, 461
list-style, 465
list-style-image, 465
list-style-position, 465
list-style-type, 465
margin, 462
margin-bottom, 463
margin-left, 463
margin-right, 463
margin-top, 463
padding, 463
padding-bottom, 463
padding-left, 463
padding-right, 463
padding-top, 463
text properties, 66
text-align, 462
text-decoration, 461
text-indent, 462
text-transform, 462
vertical-align, 462
white-space, 464
width, 463
word-spacing, 461

document object, 129-130,
 490-491

event objects, 126-127, 154,
489-490

altKey property, 154-155
button property, 155
cancelBubble property, 156
ctrlKey property, 155
fromElement property, 156
keyCode property, 154
returnValue property, 156
shiftKey property, 155
srcElement property, 157
toElement property, 157
x property, 157
y property, 157-158

float property, 184
height property, 184, 186,

201-203
HTML Object Model, 224-226

innerHTML, 225
innerText, 224-225
outerHTML, 225-226
outerText, 225

HTML tags, assigning styles,
56-65

id, 120
left, 120, 199-201
location

hash, 123
host, 122
hostname, 123

href, 122
pathname, 123
port, 123
protocol, 122
reload(), 123
replace(URL), 123
search, 123

location object, 488
navigator object, 125-126
nesting, 74-77
overflow, 187-188, 203-204, 276
position property, 192-193, 199
readyState property, 142
screen object, 489

bufferDepth, 125
colorDepth, 124
height, 124
updateInterval, 125
width, 124

style object, fontSize
property, 170

Tabular Data Control
CharSet property, 265
DataURL property, 266
FieldDelim property, 267
Language property, 265
UseHeader property, 265

tagName, 120
TextRange object, 218

htmlText, 218
top property, 120, 199-201
values, 67-70
visibility property, 173, 207-213
width property, 184, 201-203
window object, 486-487
z-index property, 206-207

property definitions for multiple
properties, 57

proprietary technologies, JSSS
(JavaScript Style Sheets), 43

protocol (location
 property), 122

protocols
HTTP (Hypertext Transfer

Protocol), 252
NNTP (Network News Transfer

Protocol), 252
SMTP (Simple Mail Transfer

Protocol), 253
pseudo classes, 73-74, 466
pseudo elements, 73-74, 466
pt (CSS property measurement

unit), 67
pthOval Control, 285
pthPolygon Control, 285

pthPolyline Control, 285
pthRect Control, 285
push technology, 40
px (CSS property measurement

unit), 67

R
Random Bars Horizontal

Transition, 286, 294,
312-313

Random Bars Vertical
Transition, 286, 294, 313

Random Dissolve Transition,
286, 294, 306-307

Random Transition, 294, 314
RDBMS (Relational Database

Management System), 551
readyState property, 142
reason (event object

property), 126
recordsets, 551
Rect Control, 284
rectangular containers,

defining, 202
rectangular flow area, 195
recursion, 516-526

JavaScript, controlling, 521-526
VBScript, 517

referrer (document object
property), 130

REL attribute, <LINK> tag, 59
relative positioning, 184,

197-205, 468
advantages over absolute

positioning, 197
coordinates, specifying, 200

reload() (location
 property), 123

Remote Data Service, accessing
data, 254

removeAttribute (body object
property), 133

removing web page content,
221-222

rendering black-and-white,
Grayscale Filter, 323-324

repeated table binding, 552

properties

573

repeated-table valued data
consumers, 242

replace(URL) (location
property), 123

replacing
elements, 216-217
tags, 224-226
text, 27, 222-224

Required Scripting
Elements, 363

Reset button, 341, 348
reset() function, 343,

348-349, 363
applications, resetting, 366-367
Listing 16.12, 349-353
Listing 17.7, 367-376

resetting applications, 366-367
restrictions, naming variables,

89-90
retrieving web server data,

troubleshooting, 237-242
returning

collection elements, 115 -116,
118 -121

collection properties, 116-117
element objects, 118
filters collection, transition

object, 293
values,

from functions, 96
Listing 5.5, 108

returnValue (event object
property), 126, 156

revealing elements, 172-181
RGB

assigning colors to HTML
pages, 69

color codes, 467
values, 552

rightMargin (body object
property), 132

Rotate Control, 284
rotating

objects, 283-284
text, 283-284

round trip server transactions,
236-237, 552

row delimiters, 552
runtime

web page content, modifying,
27-28

see also load time

S
<S> tag, 447
sans serif fonts, modifying,

168-169
scalability, 552

client-side data binding, 238
server-side data binding,

 235-236
Scale Control, 284
scaleAnother() function, 278
scaleCat() function, 274, 278
scaling

multimedia images, 274-275
Scaling an Image (Listing 13.1),

275-278
screen object, 124-125, 489

properties
bufferDepth, 125
colorDepth, 124
height, 124
updateInterval, 125
width, 124

screenX (event object
property), 127

screenY (event object
property), 127

<SCRIPT> tag, 81, 448
SCRIPT...FOR binding method,

150-152
scripting, 17-18, 21, 24-25,

40-41
body section, syntax, 532
event handling, 143-149
events, 138-143

binding functions, 149-153
focus events, 138, 141-142
keyboard events, 138,

140-141
mouse events, 138-140
onabort event, 142-143
overriding default event

handling, 158-159
selection events, 141-142
state change events,

138, 142
external scripts, specifying,

 532-533
functionalities, 343-349
header section, syntax, 532
JavaScript, 17-18
Sub procedures, recursion, 517
syntax, 532-533

transitions, 292-295
VBScript, 18, 24

scripting elements, basketball
tutorial, 363

scripting languages, 79,
514-533

JavaScript, 24, 80-83
controlling recursion,

521-526
error handling, 526-531
error trapping, 530-531
syntax elements, 82-83
see also JavaScript

recursion, 516 -526
selecting, 515-516
VBScript, 472

filtering program, 540-541
flow control, 478-481
recursion, 517-526

scripts
CGI (Common Gateway

Interface), 232
server-side data binding,

232-233
global, creating, 532

scripts collection (document
object), 135, 495

scroll (body object
property), 132

scroll (overflow property value),
187-188, 203

scroll box, basketball tutorial,
court layout, 358-361

scrollHeight (body object
property), 132

scrolling, 187-188
scrollIntoView (body object

property), 133
scrollIntoView() method,

120, 219
scrollLeft (body object

property), 132
scrollTop (body object

property), 132
scrollWidth (body object

property), 132
SDKs (Software Developer’s

Kits), Internet SDK, 544
search (location property), 123
seeagain() function, 343,

346-347
<SELECT> tag, 249, 448-449

<SELECT> tag

574

selecting
fonts, 70
proprietary implementations of

Dynamic HTML, 36-37
scripting languages, 40-41,

 515-516
style sheets, 41-43

selection events, 141-142
ondragstart event, 142
onselect event, 142
onselectstart event, 142

selection object, 131, 492
methods, 131

selectors, 57, 552
appending pseudo classes, 73
conflicting, 61
multiple selectors, 58

Sequencer Control (ActiveX
Control), 333

serif fonts, modifying, 168-169
server load, 19-20
server-side data binding,

232-233
disadvantages, 233-238

complexity, 234-235
partial data retrieval, 237-242
round trip server

transactions, 236 -237
scalability, 235 -236

tabular data, 240
servers

server-side data binding, round
trip server transactions,
236-237

web servers, client-side data
binding, 239

sessions, history object,
123-124

setAttribute (body object
property), 133

setEndPoint() method, 219
setting

HTML attributes, 54
visibility, transitioned objects,

294-295
SGC (Structured Graphics

ActiveX Control), 544
Listing G.7, 542-543
Polygon method, 544

Shadow Filter, 287, 329-330
shiftKey (event object property),

127, 141, 155
showing elements, 172-181

showObject() function, 363
constructing, 364-365

showObject() function (Listing
17.4), 364-376

showone() function, 179
showScreenCourt()

 function, 363
elements, graying out, 365-366

Shrinking Effect in Dynamic
HTML (Listing 13.2), 276-278

shrinking images, 276
silhouettes, creating with Drop

Shadow Filter, 320-321
Simple Mail Transfer Protocol,

see SMTP
single-line comments

(JavaScript), 84
single-valued data

consumers, 242
sites, web

data awareness, 13-15
defining style sheets, 25
Microsoft, 256, 285
troubleshooting partial data

retrieval, 237-242
see also web sites

size (fonts), modifying, 170
size value (font property), 168
skipping loops, 100-101
<SMALL> tag, 449
Smashout Video game

animating, 408-416
moveBall() function, 410

ending, 416-417
logic

adding, 416-423
ending game, 416-417
winning game, 418-419

objects, positioning, 404-406
onmousemove event, capturing,

408-409
programming challenges, 403
rules, 402-403
setTimeout() method, 411
starting, 409
targets, positioning, 405
winning, 418-419

SMTP (Simple Mail Transfer
Protocol), 253

Software Developer’s Kits,
 see SDKs

sorry() function, 343, 347

sorting
columns, 383-385
data, 255
Reset() method, 384
Tabular Data Control sorting,

267-269
source code zip file, 505
sourceIndex (body object

property), 132
sources

data binding, 232, 241-242
spacers, one pixel spacers, 9
 tag, 247-249, 339,

362, 449
Special Edition Using Dynamic

HTML web site, 498-504
special effects, 533-542

filters, 316
adding, 317-318
Chromakey Filter, 332
Drop Shadow Filter, 320-321
Flip Horizontal Filter,

321-322
Flip Vertical Filter, 322-323
Glow Filter, 331-332
Grayscale Filter, 323-324
Invert Filter, 324
Lights Filter, 325-327
Motion Blur Filter, 327-328
Opacity Filter, 328-329
Shadow Filter, 329-330
Wave Filter, 330-331
X-Ray Filter, 318-320

multimedia, 29-31
Alpha Channel graphics,

30-31
animation, 29-30
blending, 30-31
filtering, 30-31

specifying
colors for HTML pages

hexadecimal values, 69
natural language labels, 68
RGB values, 69

comments in VBScript, 472-473
container positions, 186-187
coordinates

absolute positioning, 199
relative positioning, 200

CSS property values, 67-70
color, 68-69
fonts, 69-70
measurement units, 67-68

data source, online catalog, 379
document.all criteria, 115
element locations, absolute

positioning, 193-197

selecting

575

element positioning
clip property, 204-205
height property, 201-203
left property, 199-201
overflow property, 203-204
position property, 199
top property, 199-201
visibility property, 207-213
width property, 201-203
z-index property, 206-207

EVENT attribute
(SCRIPT...FOR binding
method), 152

external scripts, 532-533
font styles, attributes, 168
operators in VBScript, 473-474
styles, <HEAD> tag, 57-58
table view for online

 catalog, 381
text attributes, 54
text segments for

replacement, 222
Split Horizontal In Transition,

286, 294, 308-309
Split Horizontal Out

Transition, 286, 294, 309
Split Vertical In Transition,

286, 294, 307
Split Vertical Out Transition,

286, 294, 307-308
Sprite Control (ActiveX

 Control), 333
SQL (Structured Query

Language), 552
syntax, 254

srcElement
property (window.event object),

127, 157, 161
variables, 364, 366

assigning values, 281
srcFilter (event object

property), 127
standardizing technologies,

W3C, 36-37
state change events, 138, 142

onload event, 142
onreadystatechange event, 142

readystate property, 142
statements, 82-83, 552

blocks, 83
break statement, 100 -101
continue statement, 100 -101
for loops, 98-99
@import, 60
while loops, 99-100

static elements, Pin the Tail on
the Donkey game, positioning,
339-340

static HTML
comparing with Dynamic

HTML, 8-16
disadvantages, 8-10

altering web page content,
10-11

layout, 9-10
text formatting, 9

static positioning, 192
string arguments,

 Listing 5.3, 94
string constants, defining in

VBScript, 483-484
strings, 85, 552
Strips Left Down Transition,

286, 294, 309-310
Strips Left Up Transition,

286, 294, 310-311
Strips Right Down

Transition, 286, 294, 311
Strips Right Up Transition,

286, 294, 311-312
 tag, 9, 449
strReadyState (document object

property), 130
structure of window object, 121
Structured Graphics ActiveX

Control, see SGC
style, 118
style (body object

property), 132
style blocks, 55

definitions, overriding, 62-63
style object

font property, 168
fontSize property, 170

style sheets, 16-17, 52-53
advanced features, 70-76
backgrounds, 52-53
borders, 53
classes, 71-72
comments, adding, 64-65
CSS, 25-26
definitions, processing order,

63-64
element IDs, 72-73
elements, nesting, 74-77
font properties, values, 69
fonts, 52
global, troubleshooting, 60

importing, 59-61
@import statement, 60

linking, 59-60
lists, 53
multiple selectors, 58
properties

color values, 68-69
fonts, 69-70
values, 67-70

pseudo classes, 73-74
pseudo elements, 73-74
selecting, 41-43
selectors, 57

conflicting, 61
syntax, 56-65
text, 53

<STYLE> tag, 25, 450
styles

declarations, local
declarations, 61

defining with HTML comments,
57-58

fonts, modifying, 168-172
global styles, specifying with

style blocks, 55
grouping with <DIV> tag, 175
<HEAD> tag, 57-58
inheritance, 64
inline styles, 54
see also CSS

styleSheets collection
(document object),
135-136, 495

Sub procedures,
recursion, 517
writing in VBScript, 477

<SUB> tag, 450
sub-collections, 117

see also collections
<SUP> tag, 450
switching online catalog

views, 391
Sybase SQL Server, DSOs

(Data Source Objects),
 parameters, 254

syntax
collapsible outlines, 179
default event handling, 158-159
HTML files, TDC (Tabular Data

Control), 258
JavaScript, 82-83

arrays, 104-105
blocks, 83
Booleans, 86
built-in functions, 93-94
comments, 83-85

syntax

576

data, 85-86
expressions, 86-89
flow control, 97-101
functions, 93-96
logical expressions, 87-89
multiline comments, 84-85
null data, 86
numbers, 86
numerical expressions, 87
objects, 101-104
single-line comments, 84
statements, 83
strings, 85
user-defined functions, 95-96
variables, 89-93

multiple property definitions, 57
multiple selectors, commas, 58
property definitions, curly

braces, 57
scripting, 532-533

body section, 532
header section, 532

SQL, 254
style sheets, 56-65
TDC, object reference, 259
VBScript special syntax binding

method, 152

T
tabIndex (body object

property), 132
<TABLE> tag, 9, 450-451
table views, online catalog,

specifying, 381
tables

attributes, binding data with
DATAFLD, 243-244
DATAFORMATAS, 244
DATAPAGESIZE, 244
DATASRC, 242-243

browser-safe hexadecimal
chart, 508-512

columns, creating headers, 383
creating, 14, 32
expanding, 44
generating, 44
online catalog, sorting data,

383-385
repeating tables, creating, 245
tabular form data binding, 240

tabular data, 240
data consumers, 242

Tabular Data Control, 379
data accessing, 254
DataURL property, 266

navigating, 260-265
properties

CharSet property, 265
Language property, 265
UseHeader property, 265

sorting, 267-269
tagName (body object

property), 118, 120, 132
tags

<BLINK> tag, 7
child tags, 64
containers, see containers
element objects, 118

methods, 120-121
properties, 118-120

HTML, 42
<A>, 428
<ADDRESS>, 429
<APPLET>, 250, 429-430
<AREA>, 430
assigning values, 53-54
, 430
<BASE>, 430
<BASEFONT>, 431
<BGSOUND>, 431
<BIG>, 431
<BLINK>, 36
<BLOCKQUOTE>, 432
<BODY>, 432-433

, 433
<BUTTON>, 433
<CAPTION>, 433-434
<CENTER>, 434
<CITE>, 434
<CODE>, 434
<COL>, 434-435
<COLGROUP>, 435
<DD>, 435
<DFN>, 435
<DIR>, 436
<DIV>, 175, 247, 290, 338,

359, 361-62, 436
<DL>, 436
<!DOCTYPE>, 428
<DT>, 437
, 437
<EMBED>, 339, 437
, 438
<FORM>, 438
<FRAME>, 439
<FRAMESET>, 439-440
<H1>, 440
<H2>, 440
<H3>, 440
<H4>, 440
<H5>, 440
<H6>, 440
<HEAD>, 57-58, 440

<HR>, 440-441
<HTML>, 441
<I>, 441
, 249-250, 441-442
<INPUT>, 442
<LABEL>, 442-443
, 443
<LINK>, 59-60, 443
<MAP>, 443-444
<MARQUEE>, 249, 444
<META>, 445
<NOBR>, 445
<NOSCRIPT>, 445
<OBJECT>, 258, 445-446
, 446
<OPTION>, 446 -447
<P>, 54, 447
<PARAM>, 447
<PRE>, 447
<S>, 447
<SCRIPT>, 81, 448
<SELECT>, 249, 448-449
selectors, 57
<SMALL>, 449
, 247-249, 339, 362,

449
, 9, 449
<STYLE>, 25, 450
<SUB>>, 450
<SUP>, 450
<TABLE>, 9, 450-451
<TD>, 451-452
<TEXTAREA>, 452
<TITLE>, 452
<TR>, 453
<TT>, 453
<U>, 453
, 453

identifying, 544-547
modifying for dynamic content,

226-228
parent tags, 64
replacing, 224-226

tags(tagName) collection
method, 115-117

subcollections, 117
<TD> tag, 451-452
TDC (Tabular Data Control),

257-269
CLASSID, 258
data files, specifying, 259
DataUrl parameter, 259
disadvantages, 257
HTTP advantages, 257
object reference, syntax, 259
parameters, 259
UseHeader parameter, 259

syntax

577

technologies
Dynamic HTML Object Model,

22-23
push technology, 40
standardizing, W3C, 36-37

templates, web sites, 17
test cases, 99
testing logical expressions, 99
text, 53

adding colors, 56
filtering, 533-536
fonts, 52

italic, 69-70
modifying, 168-172
modifying after loading, 16
specifying, 11

replacing, 27
partial replacement, 222-224

rotating, 283-284
text (body object property), 132
text attributes, specifying, 54
text files, browser cookies, 27
text formatting, static HTML, 9
text properties (CSS), 66

letter-spacing property, 66
text-align property, 66
text-indent property, 66
text-transform property, 66
word-spacing property, 66

text-align property, 66, 462
text-indent property, 66, 462
text-transform property,

66, 462
<TEXTAREA> tag, 452
TextRange objects, 135-136,

217-219
creating, 220
document content, modifying,

219-221
htmlText, 218
methods, 218-219
properties, 218

title (body object property), 132
title (document object

property), 129
<TITLE> tag, 452
toElement (event object

property), 127, 157
tools, diagnostic tools, HTML

tag identification, 544-547

top property, 120,
199-201, 468

values, 199
topMargin (body object

property), 132
<TR> tag, 453
Transition Name

transition, 294
Transitions, 285-286, 290-297

Box In, 285, 298
Box Out, 285, 299
Checkerboard Across, 286, 305
Checkerboard Down,

 286, 305-306
Circle In, 285, 299-300
Circle Out, 285, 300-301
elements, defining, 278
executing, 295
Horizontal Blinds, 286, 304-305
implementing, 295-298
integer IDs, 293-294
multimedia, 276-277
Random Bars Horizontal, 286,

312-313
Random Bars Vertical, 286, 313
Random Dissolve, 286, 306-307
Random Transition, 314
scaling, 277-279
scripting, 292-295
Split Horizontal In, 286, 308-309
Split Horizontal Out, 286, 309
Split Vertical In, 286, 307
Split Vertical Out, 286, 307-308
Strips Left Down, 286, 309-310
Strips Left Up, 286, 310-311
Strips Right Down, 286, 311
Strips Right Up, 286, 311-312
triggering, 292
types, 297-314
Vertical Blinds, 286, 303-304
Wipe Down, 286, 301-302
Wipe Left, 286, 303
Wipe Right, 286, 302-303
Wipe Up, 286, 301

Translate Control, 284
transparency, 30

Opacity Filter, 328-329
Tries counter, 340
triggering transitions, 292
troubleshooting

global style sheets, 60
server-side data binding,

234-238
partial data retrieval, 237-242

round trip server
transactions, 236-237

scalability, 235-236
true expressions, 88-89
<TT> tag, 453
tutorials

basketball
code, final, 367-375
court elements, laying out,

357-362
court layout, creating scroll

box, 358 -361
explanations, formatting,

361-362
functionalities, scripting,

363-367
icons, formatting, 358-361
images, creating, 356-357
scripting elements, 363

filtering program, 539
type (event object

property), 127
TYPE attribute, <LINK> tag, 59

U
<U> tag, 453
 tag, 453
unescape(charstring)

(JavaScript function), 94
unitialized (readyState property

value), 142
units of measurement

CSS attributes, 467-468
CSS properties, 67-68

updateInterval (screen object
property), 125

URL (document object
property), 129

URL (Uniform Resource
Locator), 552

URLs, DataUrl parameter, 259
UseHeader

parameter, 259
property, 265

user-defined functions, 95-96
Listing 5.4, 95-96
returning values, 96

user-defined objects, 103-109
userAgent (navigator object

property), 125

userAgent (navigator object property)

578

V
valid variable names, 90
values

assigning with multiple
selectors, 58

CSS properties, 67-70
color, 68-69
fonts, 69-70
measurement units, 67-68

font styles, specifying, 168-169
objects, X and Y coordinates,

281-282
overflow property, 203
returning, 96, 108
srcElement variable,

assigning, 281
variable names, invalid, 90
variables, 82

Counter variable, 99
JavaScript, 89-93

defining, 89-90
modifying, 91-93

modifying, Listing 5.2, 91-92
srcElement, 364, 366

values, assigning, 281
VBScript, 18, 24, 40-41, 472

comments, specifying, 472-473
concatenation, 541
constants, 481-484
filtering program, 540-541
flow control, 478-481
if..then...else statements,

478-479
operators, specifying, 473-474
recursion, 517-519
Sub procedures, writing, 477
variables

defining, 475
modifying, 475-476

VBScript special syntax binding
method, 152-153

Vertical Blinds Transition, 286,
293, 303-304

vertical-align (CSS
property), 462

video games, Smashout
adding logic, 416-423
animating, 408-416
ending, 416-417
positioning ball, 406
positioning objects, 404-406
positioning targets, 405
programming

challenges, 403

rules, 402-403
setTimeout() method, 411
starting, 409
tracking ball, 410-413
winning, 418-419

viewing elements, collapsible
outlines, 178-182

views
online catalog

product view, 393-395
switching, 391

outlines, collapsible outlines,
178-182

product view, online catalog,
391-398

visibility
elements, 173

mouse event dependent,
173-174

transitioned objects, setting,
294-295

visibility (CSS Positioning), 470
visibility property, 207-213
:visited (pseudo class), 73, 466
Visual Basic, 80
Visual Basic Script, see

VBScript
visual effects, 533-542
visual representation, DSO

(Data Source Object), 258
vlinkColor (document object

property), 129

W
W3C (World Wide Web

Consortium), 22, 36-37,
 56, 552

W3C Cascading Style Sheets
Home Page, 499

W3C CSS Positioning Proposal
web site, 500

W3C Recommendation (REC-
CSS1-961217) web site, 455

Wave Filter, 287, 330-331
web browsers, CSS syntax, 56
web pages

altering at load time, 15 -16,
26 -27

altering content at runtime,
27-28

configuring for browsers, 26 -27
content, altering, 10 -11
creating, 18-19
data awareness, 13-15
data binding, 31-32
defining, 220
deleting content, 221-222
design elements, positioning, 12
elements

DATAFLD attribute, 243-244
DATAFORMATAS

attribute, 244
DATAPAGESIZE

 attribute, 244
DATASRC attribute, 242-243
mouse event-dependent

visibility, 173-174
visibility, 173

fonts, modifying, 168 -172
HTML objects, creating, 15
indexes, creating, 27
layers, creating, 205 -209
layout

CSS (Cascading Style
Sheets), 17

Dynamic HTML, 11-13
HTML limitations, 9-10

loading, 37
maintenance, 19
modifying at runtime, 216 -217
positioning objects, 28
replacing elements, 216 -217
server-side data binding,

disadvantages, 234-238
style sheets, 16 -17
tables, creating, 14
tabular form data binding, 240
text

altering, 11
font specification, 11
formatting, 9
modifying at runtime, 217
replacing, 222-224

transitions, 290-292
Z-indexing, 12-13

web programming languages
JavaScript, 80-83

syntax elements, 82-83
see also JavaScript

web servers
client-side data binding, 239
partial data retrieval,

troubleshooting, 237-242
server-side data binding,

232-233
disadvantages, 234-238

valid variable names

579

web sites
ActiveIE, 501
CSS, 77, 499-500
data binding, 31-32
DHTMLZone, 499
IE4 Globe, 501
indexes, creating, 27
Internet SDK, 544
JavaScript, 108
Microsoft Data Source Object

Gallery, 499
Microsoft Dynamic HTML

Gallery, 499
Microsoft Dynamic HTML

Main Page, 498
Microsoft Guide to Style

Sheets, 500
Microsoft Internet Client

SDK, 499
Microsoft JScript Home, 501
Microsoft Style Sheets

Gallery, 500
Microsoft VBScript Home, 501
Netscape JavaScript Guide, 500
Netscape JavaScript

Reference, 500
objects, positioning, 28
Project Cool, 501
Scripting languages, 500-501
Special Edition Using Dynamic

HTML, 498-504
Dynamic HTML resources,

498-499
online resources, 498-501

style sheets, defining, 25
templates, 17
text, replacing, 27
W3C Cascading Style Sheets

Home Page, 499
W3C CSS Positioning

Proposal, 500
W3C Recommendation (REC-

CSS1-961217), 455
web technologies,

standardizing, 36-37
see also technologies

while loop statements, 99-100
counters, incrementing, 100

while...wend loops, writing in
VBScript, 480-481

white-space (CSS
 property), 464

width
CSS property, 463, 468
screen object property, 66, 124,

184, 186, 195, 201-203

WIDTH attribute, 258
<HR> tag, 53

window object, 113, 121-127,
486-495

document object, 121
event object, 126-127
frames collection, 124
history object, 123-124
location object, 122-123
methods, 487-488
navigator object, 125-126
properties, 486-487
screen object, 124-125

window.event object, 140,
153-158

altKey property, 141
ctrlKey property, 141
properties, 154

altKey property, 154-155
button property, 155
cancelBubble property, 156
ctrlKey property, 155
fromElement property, 156
keyCode property, 154
returnValue property, 156
shiftKey property, 155
srcElement property, 157
toElement property, 157
x property, 157
y property, 157-158

shiftKey property, 141
window.event.fromElement

object, 140
window.event.toElement

object, 140
window.setTimeout()

function, 210
winner() function, 343, 348

Listing 16.11, 348-353
Wipe Down Transition, 286,

293, 301-302
Wipe Left Transition, 286,

293, 303
Wipe Right Transition, 286,

293, 302-303
Wipe Up Transition, 286,

 293, 301
word-spacing (CSS property),

66, 461
World Wide Web Consortium,

see W3C
writing Sub procedures in

VBScript, 477

X
X and Y coordinates, object

values, 281-282
x property (window.event

object), 157
x-axis, absolute

positioning, 193
X-Height (CSS property

measurement unit), 67
X-Ray Filter, 318-320
Xray Filter control, 287

Y
y property (window.event

object), 157-158
Y-axis, absolute

positioning, 193

Z
Z-index, 12-13, 189, 341

basketball tutorial, court
elements, layering, 358

CSS Positioning, 469
z-index property, 206-207
zip files, source code

zip file, 505
zooming, 27

zooming

580

Special Edition Using VBScript
Publisher: QUE
Author: Ron Schwarz and Ibrahim Malluf
ISBN: 0789708094
Publication Date: 01-SEP-96
Retail Price: $49.99
Que’s Special Edition Using VBScript is your
one-stop reference to state-of-the-art Internet
programming using Visual Basic, Scripting
Edition and the ActiveX Control Pad. This
comprehensive reference will guide you
through the steps of writing powerful
VBScripts and more.

The expert authors take a new and complex subject and
make it understandable by building layer upon layer with
well-focused chapter sections. Numerous, concise examples
demonstrate the principles and practices involved in creating
a full-featured system. Learn to write powerful Internet
applications and build interactive web pages with VBScript.

HTML Style Sheets Quick Reference
Publisher: QUE
Author: Rob Falla
ISBN: 0789710358
Publication Date: 01-DEC-96
Retail Price: $19.99

This complete HTML Style Sheets command
reference provides you with key information
on the most important HTML Style Sheets
commands. With a comprehensive index and
exhaustive command reference section, you’ll
have all the essential information you need to
easily create your own web pages with HTML

Style Sheets—at your fingertips!

Versatile and easy to use, this reference provides you with
complete syntax for the hottest HTML Style Sheet com-
mands. With instant access to all the HTML Style Sheets
information you need, you’ll achieve peak performance!

Special Edition Using JavaScript, Second Edition
Publisher: QUE
Author: Andrew Wooldridge, Mike Morgan,
Mark C. Reynolds, and Jerry Honeycutt
ISBN: 0789711389
Publication Date: 01-MAY-97
Retail Price: $49.99
The secrets to unleashing the full power of
JavaScript—at your fingertips! Que’s Special
Edition Using JavaScript, Second Edition is
your one-stop resource to this new open

programming platform. You will understand the language
and what it can do for special visual effects and formatting,
and you will find the advice and information you need to
program like a pro! A team of experts guides you through all
aspects of JavaScript, detailing the constructs of the lan-
guage and showing how to implement JavaScript on your
web pages.

You’ll learn expert techniques for writing Java applets that
can be used with JavaScript. You’ll also discover unique ways
to use JavaScript, such as adding routines and examples that
achieve graphical effects, enhancing the appearance of the
browser, adding special formatting to the text, controlling
input, and much more. Plus, you’ll find valuable information
on associated web technologies, including Java, VBScript,
and ActiveX. With complete information, detailed instruc-
tions, and real-world examples, this is a must-have resource
for serious web programmers! Program successfully for the
Internet with Special Edition Using JavaScript, Second
Edition from Que!

Special Edition Using HTML 3.2, Third Edition
Publisher: QUE
Author: Mark R. Brown and Jerry Honeycutt
ISBN: 0789710978
Publication Date: 01-APR-97
Retail Price: $49.99

Que’s Special Edition Using HTML 3.2, Third
Edition is the complete reference for all aspects
of HTML 3.2 web page creation. The expert
authors give you an insider’s view of new web
page technology, such as Java, JavaScript, and

ActiveX. You’ll also find up-to-date coverage of HTML 3.2 features
supported by Netscape and Microsoft Internet Explorer.

	Contents
	Introduction
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H

